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Propagation Effects in Optica| Fibers
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Abstract—The round dielectric wavéguide exhibits a surprising
variety of characteristics that are not accurately inferable from the
slab model. The forceful effort of recent years has grately extended
the knowledge of these structures and added new and exciting
modifications. An attempt to unify these results in a simplified
picture is made. Specific phenomena relevant to optical fiber design
and fabrication are then brought into focus. Some of the problems
discussed are cross sectional loss variations, various core index
profiles and the tolerances required in their preparation, the neces-
saty cladding thickness, directional changes, and sources of mode
coupling affecting signal distortion and loss.

I. INTRODUCTION

HE LAST few years have seen a rapid increase both
in technological know-how and theoretical under-
staunding of optical fibers and, along with it, a new variety
of fiber structures. At the same time, the issue of ma-
terial loss, which had barred fibers from the communica-
tions field longer than necessary, was so convincingly
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solved that other aspects are how becoming a prime con-
cern of optical communications research. This then seems
to be a good time to take stock, to organize the knowledge
gained, and to assess the available options. Accordingly,
a great number of review articles have appeared in a rapid
sequence all over the world. To name only the most recent
in the order of their appearance, there is an article by
Maurer [17] addressed mainly to the technology of fiber
preparation. Opto-Electronics devoted its July and Septem-
ber issues of 1973 to the subject of fiber optics featuring
reviews of the state of the art in Britain [27] and Germany
[3]. An article by Ohnesorge [47] advanced some of the
less conventional ideas of communication systems appli-
cation for optical fibers. Miller ef al. [5] have prepared
a very comprehensive review of the current knowledge
relating it to potential applications in the conventional
communications network. The quite different though
equally immediate potential of fibers for military applica-
tions becomes apparent in an article [6] which appeared
in this TransactiONs in December, 1973. The conven-
tional technology of fiber bundles [77] seems to be more



GLOGE: PROPAGATION EFFECTS IN OPTICAL FIBERS

readily applicable in this case, where multiterminal infor-
mation transfer over short distances on board aircraft or
ship is the objective. To complete our “review of the re-
views,” we should mention a 6-page summary of the state
of the art [8], interesting for those looking for a concise
overview, and, of course, some of the textbooks available
on the theory of dielectric wave guidance [9-[117]. It is
quite likely that review articles on optical fibers will con-
tinue to appear within similar or even shorter intervals.
An English-language paper on the very extensive and
successful work in Japan [127, for example, would be
quite welcome. On the other hand, those interested in the
field are by now quite well informed about the history and
breakthrough of communication-oriented fiber optics and
can find more than 300 references on the details in the
reviews cited earlier.

Rather than adding to this list, I wish to narrow the
objectives of this paper in an attempt to present a concise
and unified picture of the propagation characteristics of
the round dielectric waveguide both in its ideal and its
imperfect state, in order to provide some simple results
relevant to design and systems questions in optical trans-
mission applications. Many of these results deviate suf-
ficiently from the well-known characteristics of the two-
dimensional dielectrie-film model to arouse some caution
as to the validity of the usual extrapolations of film con-
cepts to the fiber description. One of the objectives of this
article is, therefore, a closer look at the limits of our knowl-
edge of the round dielectric structure and the identifica-
tion of areas where further investigations are necessary.
In line with these objectives, references are cited merely
to direct the reader to additional material on a given sub-
ject matter and are not necessarily the first or only pub-
lications on the subject.

We begin in Section IT with a discussion of the guidance
concepts governing the round dielectric waveguide. Aside
from the classical core-cladding structure, this includes
cylindrical graded-index profiles and slab-supported guides.
Section III takes a ook at realistic fibers in a practical
environment and attempts to incorporate the influence
of cross sectional loss variations, finite cladding thickness,
directional changes, and random imperfections in the
laws of propagation. The emphasis is on measurable vari-
ables and measured results. The dispersive effect of the
material and the waveguide, delay between fiber modes,
and the resulting signal distortion are the subject of Sec-
tion IV.

II. GUIDANCE PRINCIPLES

Trapped or lossless propagation of light in dielectric
waveguides relates to idealized structures which are
straight and unperturbed in propagation direction, have
unperturbed surroundings (infinitely thick cladding) and
are made from lossless materials. This is the structure we
discuss in this section, confident that slight modifications
will later suffice to adapt the results to practical condi-
tions; perturbation methods to achieve this are discussed
in the next section. The classical clad glass fiber [77] traps
light by total internal reflection at the core boundaries
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where the index drops to the slightly lower cladding value.
Modern structures like the graded-index fiber whose index
decreases gradually outward from the axis employ a con-
tinuous focussing process to achieve trapping, which can
be considered as a kind of distributed internal reflection
[13]. Propagation in the single-material fiber [14] is not
characterized by an index change at all, but solely by the
cross sectional configuration. Whatever the underlying
principle of guidance, all structures can be designed to
support one or many trapped modes of propagation. Be-
ginning with the classical clad structure, we shall discuss
its single-mode configuration in greater detail, hoping
that this will aid in the understanding of the other two.

The round clad fiber is one of the few dielectric wave-
guide structures, for which Maxwell’s equations have
rigorous (though fairly unwieldy) solutions and these
have been discussed in many places [97], [10]. The very
existence of such solutions has probably kept theorists
from searching for simplifying approximations even after
such approximations were found, and recognized as useful,
in the case of the parabolically graded index profile (see,
for example [157]). The approximations recognize the
fact that, ultimately for technological reasons, the change
from the core index n, to the cladding index n, is typically
small. In other words,

ny = m(l — A) (1)

and A < 1. Under these conditions, field solutions can be
found both for the flat and the graded core index profile,
which are essentially transverse electromagnetic and
linearly polarized [15}-[17]. Strictly speaking, all these
solutions (except for the fundamental) are superpositions
of more complicated field solutions that appear degenerate
in these approximations, but in reality break apart upon
propagation over long distances as a result of small differ-
ences in the propagation constants. The approximations
are completely satisfactory, however, in predicting the
modal power distributions and group velocities; this is
essentially what is needed in fiber-optical communication
systems, which, for the time being, are restricted to direct
(power) modulation and detection for economical reasons.

In the case of the classical fiber structure, which has an
abrupt index step at the core-cladding boundary, the ap-
proximation ignores essentially the slight difference (of
order A?) in the matching conditions for the electric and
magnetic field components tangential to that boundary.
As a result, the boundary conditions simply require con-
tinuity of all transverse field amplitudes and their radial
derivatives through the boundary. In a cylindrical strue-
ture, these conditions can be met by the well-known trial
solution

Jilur/a) /J(u)

E(r,¢) = E(a)
Ki(wr/a) /K (w)

r<a
cos lg, (2)
r>aQ

where k = 2x/\ is the free-space wave number, a the core
radius, and E(a) the maximum field amplitude at the
interface; w and w are a pair of parameters,. whose mutual
interrelation is determined by the matching conditions
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Fig. 1. Dielectric profile of the single-mode fiber with uniform
core index. )

[167, [17]. How u and w relate to the propagation con-
stant 8 and the structural parameter v (usually called the
v-value) is evident from the dielectric profile sketched in
Fig. 1. We find

v = (w2 + w)? = gk(n?® — n?)V? = akn, (24)12

(3)

and
B2k = n? 4 (ne? — no?) w2/t (4)

In general, the problem of characterizing the modes of
a certain fiber can be approached in the following way:
the measurement of a, A, and the wavelength of operation
determines ». The parameters u and w then result from
(3) and the (transcendental) ‘‘characteristic equation’
derived from the matching conditions [167], [17]. Equa-
tion (4) finally permits the computation of 8. For many
technical problems, u, w, or 8 are of little direct use, except
as a basis for calculating the more important mode power
and group velocity relations. For example, the question
of how bulk loss differences in core and cladding affect
the mode loss requires some knowledge of the power dis-
tribution in core and cladding. In the classical fiber struc-
ture, the mode power and group velocity relations can be
derived from an auxiliary parameter [17], [11]

()
S (w1 (u) )

If P is the total power in a certain mode and Py and P, are
the power fractions in core and cladding, we find [17]

Py

J1= (5)

=2 4w ()

P P .
The power density at the core-cladding interface, averaged
over the circumference, is
p(a) = 5 jatfon. @)
a
The density p(a) determines the amount of mode loss
caused by imperfections in the interface. The group ve-
locity relations of interest are discussed in Section IV,
This outline would be of little help to the reader without
some knowledge of how to obtain % or w. Before this is
discussed, we must take a closer look at situations of prac-
tical interest and the numbers of modes involved in these
cases. The approximate theory, on which our discussions
are based, stipulates that the number of independent
field solutions (degenerate mode groups) is equal to the
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number of zeros of all Bessel functions J/; which are smaller
than v, plus the fundamental solution [16], [17]. If
v < 2.4, only the fundamental mode propagates. This
mode has the transverse field distribution Jo(ur/a) in the
core. The cladding field decays monotonically with the
distance from the interface; it reaches farther and farther
into the cladding as v decreases. A theory which considers
the cladding thickness as unlimited finds this mode to be
trapped even as v approaches zero.

There are two distinctly different operating conditions
for fibers used in transmission systems: single-mode and
multimode operation. The former avoids the signal-
impairing effect of mode delay differences and therefore
provides the ultimate in transmission bandwidth. For this
reason, the single-mode fiber has a definite potential for
wide-band optical communieation; it is likely to gain in
importance once sources become available [187] that have
sufficient spatial eoherence to excite the one mode of the
single-mode fiber efficiently. On the other hand, single-
mode operation limits the core diameter and the index
difference as well as the tolerances acceptable for these
two parameters, a fact which may complicate large-scale
fabrication and field splicing of such fibers. Secondly, and
maybe more importantly, since the single-mode fiber
accepts only the equivalent of one radiation mode from
any source, it is practically useless in combination with
incoherent sources (luminescent diodes) and deficient,
if the source is multimode. For all these reasons and be-
cause recent fiber art has devised schemes of alleviating
the signal impairing effect of mode delay differences in
multimode fibers, multimode operation is at least of equal
importance. Typically, such fibers are designed to support
a great number of modes in order to fully bring their ad-
vantages to bear.

Coming back now to the computation of the parameters
u or w from v, we distinguish the two cases of single-mode
and multimode operation. As we shall see, the second case
allows a rather summary treatment of all modes yielding
closed-form approximations of satisfactory accuracy.
Rather than enumerating similar approximations valid
in specific regions of the single-mode regime, we simply
plot here all important parameters characterizing the
fundamental mode in a way that allows an accurate read-
ing everywhere. For this reason, the ordinate of Fig. 2
is chosen linear around unity and logarithmic below.
Plotted along the abscissa is the v-value in the region
between v = 0.6 and 2.4, which covers the single-mode
regime of interest. In addition to the parameters « and w,
we have plotted w?/1?, which determines 8 according to
(4), jow?*/v?, which is proportional to p(a) of (7), and
(1 4+ jo)w?/v?, which determines the power distribution
(6). Accordingly, Py/P can be read off the left side and
P/ P off the right side of Fig. 2.

Although, theoretically, the fundamental has no cutoff
as v decreases and hence propagates even at lowest fre-
quencies, it is obvious from Fig. 2 that the power con-
tained by the core is only 0.1 percent at v = 0.6 and de-
creases rapidly for lower », making effective guidance



GLOGE. PROPAGATION EFFECTS IN OPTICAL FIBERS

1.8 e pa—
JkdzB/dkz LD

R AT 8
14 —»_—‘A,, @///-
1.2 b 7<W L e

1.0 // J% b w2

/ T |\1 ]o)v2 V]

0.8 SR S 3 0.2

0.6 / S

0.4 / VS 0.6

A AL
0.04 - ////A_M_, \o.ss

0.02 /// / —— 0.98

0.01 //// IO 0.99

0.004 I .

o T T T enee

0.001 ] B — - ——1 0,999

0.0001 0.9999
0.6 1.0 1.4 1.8 2.2

v —P

Fig. 2. Various characteristics of the fundamental mode in the step-
index fiber plotted versus the v-value.

below » = 0.6 virtually impossible. More interesting than
the lower bound is the region towards large v, because, at
optical wavelengths, the objective is in making the core
radius a and hence v as large as possible, to alleviate fabri-
cation and splicing tolerances. A safe operating point
may be » = 2. Any remaining effort in maximizing a is
limited to a reduction of A, The parameter A, on the other
hand, must at least be of the order of 0.3 percent if ex-
cessive bending loss is to be avoided; this condition is
explained by (41) of Section III. As a result, we find with
the help of (3) that the core diameter of the single-mode
fiber can measure 5 to 6 wavelengths at the most.

Plots similar to Fig. 2 can be produced for all modes of
the classical fiber structure when the region of » is ex-
tended to larger values [17]. Such detailed knowledge of
every one of the hundreds of modes propagating in typical
multimode fibers can be rather confusing. On the other
hand, one arrives at very satisfactory closed-form expres-
sions of general validity for all but the very lowest order
modes, if one makes use of the Debye approximations for
the Bessel functions [19]. Although these approximations
are rather simple and straightforward as far as the mathe-
matical side of the problem is concerned, a direct deriva-
tion from physical principles has several side benefits.
One is an effortless association of modes with rays [20],
the other is an easy extension of these principles to fibers
with a nonuniform core index, which will be of use later
on. The direct derivation uses the method of Wentzel,
Kramers, Brillouin, and Jeffreys (WKBJ) modified to
apply to cylindrical structures [21], [22]. This approach
is outlined in the Appendix. The following more casual
argument is based on the same ideas but requires less
mathematics [23].
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Fig. 3. Wave vector diagram in the propagation region of a multi-
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Fig. 4. (a) Dielectric profile of the classical fiber structure (uniform
core index) showing squared magnitudes of vector components for
azimuthal mode order 1.

We assume the_existence of locally plane waves in the
core guidance region. Fig. 3 shows a decomposition of the
local wave vector (pertaining to a given mode) into its
components in the cylindrical coordinate system (r, ¢, 2).
The axial component is the propagation constant 8 of the
mode. The azimuthal periodicity indicated by cos l¢ in
(2) results in a ¢-component, [/r at r. Since the magnitude
of the wave vector is nk, the radial component becomes

q(r) = (K'n* — B> — B/r")'2 (8)

with n = n; in the core and n = n, in the cladding. Fig. 4
is a plot of a dielectric profile similar to Fig. 1, showing
the square magnitudes of the various components as a
function of the radius. Within the region la/u < r < a,
in which g is real, we introduce a parameter

(9)

This region represents the core area, in which a periodic
field solution exists. Outside of this region, both in the
core and in the cladding, the radial component becomes

= gqa = (u® — Pa?/r*)">
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Imaginary, causing the mode field to decay monotonically
with the distance from the boundaries. The decay param-
eter in the cladding is

b = (w4 Ba2/r)n, (10)

The cylindrical surface of radius la/u in the core repre-
sents a caustic [20] for rays which travel within the region
la/u < r < a and have the direction of the local wave
vector. A cross sectional projection of one of these rays is
shown in Fig.. 3(b). The entire group represents the
“congruence” of rays [20] associated with the mode
under discussion. Before we define this mode more fully,
let us digress briefly to take a closer look at the ray picture.
The angle which all rays of a congruence form with the
axis obeys the relation

sin 6 = u/akn,. (11

When the rays leave the fiber end face into air, sin 6 in-
creases to '

sin © = u/ak (12)

as a result of refraction. For small 0, if we were to set up
a screen perpendicular to the axis at a distance ak mm
away from the end face, all these rays would impinge on
the screen approximately at a distance w mm from the
axis. In typical multimode fibers, ak may be of the order
of 100 and w varies between 0 and v, the latter being of the
order of 30. In accordance with lens optics definitions
the product of the refractive index and the sine of the
maximum ray angle, that is,

N1 810 Omex = v/ak = (N2 — na?) V2 2 my (24) 12

(13)

is called the numerical aperture of the fiber.

A complete identification of the modes of the cylindrical
structure requires two mode numbers: the azimuthal
order number discussed earlier and a meridional order
number m, which identifies the number of field maxima
of the radial field solution (this count includes the maxi-
mum at r = 0 for I = 0). The WKBJ approximation for
m is obtained from a count of the number of half periods
comprised within the radial phase change between the
caustic and the interface. This results in the relation

1
mmr = / 4 dp (14)
U
with p = r/a. A rigorous and more accurate derivation
of this relationship ean be found in the Appendix. How-
ever, (14) gives usually a satisfactory description of the
modes of a typical multimode fiber. In the case of the
classical index profile, we can solve (14) after inserting
(9) and obtain

m = (1/m)[(u? — )Y2 — larceos (I/u)]. (15)

Fig. 5 illustrates this relation for different ratios u/v.
Modes are marked in this plot by a uniform raster of spots
of density 1/v® (see upper right of Fig. 5). Each spot to
the left of the line u/v = 1 represents'a degenerate quad-
ruplet of trapped modes of different polarization or orien-
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Fig. 6. (a) Dielectric profile of a graded index fiber showing caustics
tor mode characterized by u, {. (b) Cross sectional projection of a
ray characterizing above mode.

tation. There are no spots along the ordinate since
m = 1,2,---; spots falling on the abscissa (I = 0) repre-
sent doublets [117]. If »>> 1, as for typical multimode
fibers, we ean count the total number -of modes simply
by integrating (15) with respect to I. The result is the

mode volume
M= 4/ m(l) dl = /2. (16)

0

‘Given a certain mode (m,l), Fig. 5 provides the u-value
of that mode. The characteristic ray (or group of rays)
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of that mode is then defined by (11) and the caustic at
r = al/u. Equation (4) and the relation w?® = > — ?
yield the propagation constant 8. As for the power dis-
tribution, a more accurate match of the field solutions
(A9) at the interface is necessary to obtain the approxima-
tion

JUE | RN S, [
PR T RF @+ e
with # = 1 for I = 0 and % = 0 for ! 0. By using this
relation in (6), the cladding power becomes

_ Puy2/v?
S h (w e

Note, that P, = P/(h 4 I) at cutoff, where v = v and
w = 0. Thus, contrary to the mode behavior in the slab
(or for I = 0, 1 in the fiber), a good fraction of most fiber
modes is concentrated in the core even at cutoff. This is
a result of the fact that the cladding field solution (A9)
decreases as 7! at cutoff, where W = I/r.

The convenience of detection and measurement in the
optical far-field renders the modal far-field distribution
often more important than the mode field itself. We recall
that the exit angle © of a ray characterized by m and !
obeys the relation (12) and is only a function of » and not
explicitely of m and I. We can therefore infer that, as
ka — o, the far-field radiation of all modes characterized
by u converges on a cone with haif—apex angle 0. A dif-
ferent, though somewhat more general, interpretation of
the same relationship stipulates that the power dP(u) of
all modes falling between two lines characterized by u
and u 4+ du in Fig. 5 can be collected in 4 ring of radius u
and width du on a screen a distance ak away from the
fiber end (measure u and ak in millimeters, say).

Fig. 6 depicts the dielectric profile and a ray projection
in the case of a graded core index profile. The area of
periodic field solutions is now limited by two caustics.
Rays characterized by u exit at the angle © only, if they
leave the guide exactly from the center (only possible for
meriodional rays). All other exit positicns of rays charac-
terized by u lead to exit angles smaller than ©(u). Ac-
cordingly, the far-field relations for ka — « in the graded-
index case are not as simple as in the case of the uniform
core. A straightforward modification of (14) results in
the characteristic integral

P, (18)

1 rm
m = ~/ [kn2(r) — B2 — B/ 2 dr (19)
™ "
where we have again neglected a small term additive to m.
A class of profiles of particular interest has the form

(1 - 2Apg)1/2, p<1
= 7
(1 — 24)1,

n(r) g > 1. (20)

p>1

It includes the classical fiber with uniform core discussed

so far (g — =) as well as the parabolic index distribution.

(g = 2); the latter is important because it provides an
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Fig. 7. (a) Sketch of single-niaterial fiber showing vector diagram
in membrane. (b) Typical cross seetion showing membrane
length s.

effective equalization of the modal group velocities [ 13].
We return to the discussion of this effect in Section IV.

An exact solution of (19) is not known, but I have found
the approximation

2 2/g 12 11/9 2/g
i) - () () 0)
24y g+2 g+2 v

(21)

very satisfactory. Tt is exact for ¢ = 2 and very good as
long ds ¢ is not too large. The maximum error results for
g — % and can be inferred from a comparison with (15).
An integration of (21) similar te (16) yields the mode
volurhe

1 g7
[ﬂzs
2942

which can be shown [23] to be exact for all ¢ within the
limits of the approximations that apply to (19). As (22)
shows, the mode volume of the graded profile is typically
less than that of the uniform core when both have the same
total index difference. Parabolic grading, for example
vields My = M /2.

The fiber configuration of Fig. 7 permits the trapped
propagation of a desired number of modes in a core which
is suspended between two membranes made of the same
material as the core [147]. Although there is no index
change between the core and the membranes, the latter
have a function similar to that of the cladding in previous
configurations. In line with the idealizations dpplied to
those, we assume for the time being that the miembranes
extend to infinity to both sides of the core. To understand
the function of the membrane, consider the wave vector
diagram of an arbitrary (plane) wave field in the mem-
brane (see Fig. 7) [247]. The large index change between
the membrane and the surrounding air enforces a trans-
verse wavenumber of a magnitude close to ur/2b, where

(22)

w=1,2,--7 and b is the half width of the membrane.
The ‘vector summation yields
N\ 2
kn? = 8 + (;—Z) + 72 (23)
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If the membrane field is part of a core mode, 8 is the
propagation constant of that mode and hence, with the
notation of Fig. 1, ’

u? pr\? R

@ <2b> 7 T
Trapping of core modes requires that all field solutions
are of the evanescent type along the membranes and hence
v must be imaginary even for the smallest u, thatis, p = 1.
Consequently, u/a < x/2b, where the equality denotes
cutoff for the mode characterized by . Since per definition

= v at cutoff, we can define an effective v-value of this
fiber configuration of the form

ve = mwa/2b.

(24)

(25)

By using v, instead of v in (3) and all subsequent equations
as well as in Figs. 2 and 5 we obtain essentially all mode
characteristics of this fiber structure, including the condi-
tions for single- or multimode operation.

III. PROPAGATION LOSSES

Mode attenuation results first of all from the dissipative
and scattering loss of the core and cladding materials and
the interface between the two. Secondly, loss ean be caused
by the finite cladding width and the (sometimes inten-
tionally) lossy jacket around the cladding. Thirdly, a
radiation loss is suffered by modes which are not fully
trapped. All three sources of loss usually affect different
modes differently. Even small loss differences can cause
virtual extinction of some modes in comparison to others,
if the fiber is sufficiently long. In general, coupling of
modes as a result of perturbations along the fiber balances
the effect of loss differences by continuously transferring
power into modes otherwise lost. Ultimately, this transfer
causes 2 loss in all modes. :

Let us first ignore the complicating influence of cou-
pling. This assumption seems quite relevant to potential
communications applications, since careful preparation
and handling of fibers has been shown to reduce coupling
to negligible amounts even in long fiber lengths [25].
Under these conditions a loss of, say, «; dB/km in the core
and a, dB/km in the cladding produces a mode loss

oq(m,l) = a1P1/P + asz/P. (26)

With P, and P, from (6). If we ignore the case I = 1,
we have 2 = 0 in (17) and

2
ar = a1 + (s — oq) ’%2— (w? + 12)—12, (27)
for the classical step-index profile. Fig. 8 is a plot similar
to Fig. 5 showing lines of constant «z. In the case of large
v, the loss of few modes exceeds «; even if o is large. Similar
modal loss coefficients can be derived with the help of
(7), if a source of loss exists in the interface between core
and cladding.
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Fig. 8. Same plot as Fig. 5 (broken line is boundary for trapped
modes) ; solid lines are Jines of constant loss for various loss phe-
nomena: o;—leakage loss, «,/x—jacket loss, as—curvature loss,
ar—loss as a result of cross sectional loss variation of the form (26).

A graded profile is generally obtained by adding or
exchanging one or more components in the host glass.
It is likely that the additive causes a certain excess loss
or, in the case of an exchange, that the loss of one com-
ponent is different from that of the other. In either case,
the loss variation is likely to follow the index variation
so that the loss at a distance r from the axis becomes

o — n¥(r)

a(r) = ap+ (o — o) i — (28)
The loss suffered by a given mode is in this case
arp = / a(r)p(r)r dr// p(r)rdr (29)
0 0

where p(r) is the power density of that mode at r. To
solve (29) we use the relation [26]
g dp

ke~ /(,m"2<r>p(f>’df/[)wp(r)rdr (30)

and d8/dk = ct(u) from (60) of Section IV. We obtain

2 W
g2

Note that (31) does not converge into (27) for g — o, but
yields err = a. This is so because (31) is based on the
assumption of negligible evanescent fields, which was
introduced to obtain (19). This approximating assump-
tion is valid and useful in cases when both index and loss
vary within the regions of propagating field solutions
(between the two caustics), because the different extent
of these regions for different modes is then likely to be
the overriding influence in causing loss differences among
the modes. This effect disappears of course for g — oo,

(31)

arr = ay + (o — ayp)
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and the second-order effects expressed by (27) are then
the predominant source of loss differences.

Although assumed infinitely thick in Section II, the
fiber cladding measures typically only tens of micrometers
in thickness and is covered by a lossy jacket to avoid cross-
talk to other fibers. The resulting perturbation of the mode
fields of Section II is nevertheless small because of the
rapid cladding field deeay of almost all modes. For this
reason, the power loss can be obtained in good approxima-
tion from the unperturbed mode field with the help of the
matching conditions at the jacket interface [277]. If the
(complex) jacket index is n,; and its real part is not too
different from the cladding index, the ratio between the
radial and the axial power flow at the interface becomes
[27]

x = Re [ (kn;/B8)% — 1]¥2 (32)

Assuming a cladding thickness s, we can relate the power
loss «, to the averaged power density p(a + s) at the
jacket interface by integrating around the circumference
and dividing by the total mode power P. The result is

aj = 4.34x(a + s)xp(a + s)/P in dB. (33)
After inserting (7) and (A9), we have

434 4 ’ "
_ 434 M_,v,%exp<fz[ wdr/a) (34)

* a X'Lb(a+s) a

with @ from (10) in the case of the step index profile.
Ifl =0,

s = — In (4.34xju?/vPa;). (35)
2w

In the case of the single-mode fiber operating at v = 2,
we find most parameters appearing in (35) from Fig. 2
and obtain s = 8a for «a;/x = 1 dB/km, in good agree-
ment with results of [27]. The great variety of potential
jackets makes it difficult to find a representative value
for x. It may be of the order of unity or smaller. On the
other hand, it is evident from (35) that s is not very sen-
sitive to the ratio o,/x.

The fairly complicated rigorous solution of (34) forl # 0
is omitted here. The line o;/x = 1 dB/km in Fig. 8 depicts
the result for the specific example:

core radius a = 25 um
cladding thickness s = 20 um
free wavelength A = 1um
relative index difference A = 1 percent
core refractive index n, = 1.46.

Trapped modes to the right of this line have a loss ratio
aj/x larger than 1 dB/km. Their number represcnts ap-
proximately a fraction

1 a* In? (1/a0;)

~ 27 s%5 In (1 + s/a) (36)

ni
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Fig. 9. Equivalent dielectric profile of curved step index fiber;
center of curvature is far left (outside field of view) at distance I
from guide axis.

of the total raode volume. For the parameters listed above,
7; amounts to about 6 percent. As a rule of thumb, the
cladding thickness should be

(37)

s & 36an,~ V23

for ,/x = 1 dB/km to be restricted to a fraction »; of all
modes. The same relationship holds for the membrane
length in the case of the single-material fiber (Fig. 7(h)).
The core-membrane structure is typically surrounded by
a tube of the same material as core and membranes. This
tube provides strength and stiffness and the necessary
shield against contamination of the core surface. Naturally,
in this case, x obeys a relationship different from (32).

The bending of a dielectric waveguide produces a source
of radiation loss in the cladding; Marcatili and Miller [29]
explain this phenomenon as follows: to maintain a guided
mode field with equiphase fronts on radial planes, a frac-
tion of the mode field on the outside of the bend would
have to exceed the plane wave velocity in the cladding
medium. Since this is impossible, the energy associated
with this part of the mode field is lost to radiation. For
the purpose of evaluating this effect, we reduce the prob-
lem to that of a straight guide by conformal mapping [20];
the result is the index distribution shown in Fig. 9. It is
easy to convince oneself that the index slope of Fig. 9
causes very nearly the same phase velocity differences as
a bend with its center at a large distance R to the left of
the profile center. It is also evident that the incessant in-
crease of the index towards the right eventually creates
a real radial wave vector component in the cladding, and,
as a result, periodic field solutions and a radiative power
flow extending to infinity.

Because of the absence of cireular symmetry, the field
solutions with the profile of Fig. 9 are not of the form (2)
or (A9). This fact greatly complicates an estimation of
the radiative loss and has limited most published work to
the lowest mode orders. Reference [297] is an excellent
survey of the literature. The following remarks add some
recent results applicable to aribtrary mode orders [30].
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As Fig. 9 indicates, the extent of the evanescent field
(between the interface and the caustic at which the field
turns radiative) increases with increasing azimuthal mode
order 1. As a result and because of the rapid decay of the
evasescent field, meridional mode orders suffer more loss
in fiber bends than corresponding azimuthal orders.
Furthermore, modes that are degenerate in the straight
fiber exhibit differences in loss if they differ in orientation
with respect to the plane of curvature: fields that are even
or symmetric with respect to this plane behave differently
from fields that are odd. The following results are based
on WKBJ field solutions for the profile of Fig. 9 expressed
in parabolic cylinder coordinates [30]. The power loss
per unit length in decibels is

ay = ﬁ y U)2 (4w2 + §-4/3B—1/3 1/2)
a?ny Ic
- exp~! (wB2® 4 (23 — 4B-UR)2 (38)
with
2 R
T3 ntkad (39)
and
[+ % for even modes
l, for odd modes.

In the case of the single-mode fiber operated at v = 2,
the first term in the exponential of (38) dominates. For
= 1dB/km, we ‘obtain with the help of the parameters

of Fig. 2

R = (54 02In A)rae, (41)

A relative index difference of 0.3 percent corresponds to
a core diameter of 5.6 um and permits a bending radius of
23 mm, which is in the vicinity of the mechanically safe
bending limit.

The line ¢, = 1 dB/km in Fig. 8 represents a computa-
tion of the bendlng loss on the basis of (38) for the fiber
characterized earlier and bent to a radius of 15 mm. In
general, the fraction of modes having a loss «, larger than
1 dB/km is approximately

I:_%_B—l/:i + 1n2/3 (A1/2aac) ]5/2
oA (Rkny) 2/ '

7. = 0.1 (42)

For the example above, 5, = 8 percent.

So far, we have ignored modes outside the cutoff line
denoted by v = v in Fig. 8. For these modes, the zero level
in Fig. 4(a) falls below the cladding level k*n,> — 8% This
implies radiative field solutions throughout the cladding
and intolerable loss if I = 0. For I # 0, however, the radi-
ative field solutions exist only beyond the caustic at
r = al(u? ~— v®)~V2, where the function */r* in Fig. 4
intersects the level k?n,? — 82 For large [, leakage through
the evanescent field region between the interface and the
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caustic is small [317], and hence these modes can propa-
gate long distances even though u > v. To obtain a simple
estimate, we make the assumption that u? — 02 K B,
because this condition permits the largest extent of the
evanescent field region and thus promises the least leakage.
For typical multimode fibers for long-distance transmission
which have v < 50, this is a valid approximation, since the
loss of modes not fulfilling this condition is so high that
they are of no further interest. Similar power flow con-
siderations as for the jacket problem lead to the loss co-
efficient [31]

-1 u? — %\

= 434 o (1.85 = 1).

The line o; = 1 dB/km in Fig. 8 depicts the result for
the parameters listed earlier. Modes to the left of this line
must be considered as propagating even though they are

theoretically “cut off.” The relative increment in mode
volume as a result of these modes is approximately

(43)

1 = 0.1(ac;/AV2)1>, (44)

This result holds for » < 50, a condition that seems to
be fulfilled for typical multimode fibers envisaged in opti-
cal communication applications. The fiber characterized
earlier has n; = 6 percent.

Tt is interesting to note that the last three loss processes
(e, o, and ay), which all originate from some form of
leakage through the evanescent field region, show a sharp
rise of loss at a certain mode order. This permitted us to
define this effect in terms of a reduction of the total mode
volume rather than as a loss per unit length. If the leaky
modes are not excited and coupling is absent, a loss based
on these effects should essentially be avoidable. As we
shall see, it is the presence of coupling which turns these
effects into an actual loss per unit length.

Mode coupling is caused predominantly by perturba-
tions which have a periodicity in propagation direction
equal to the beat wavelength A pertaining to the two
modes that are coupled [32]. This wavelength is the dis-
tance within which the phase of one of the modes lags a
total of 27 behind the other.The phase lag per unit length
is

27 aB 5
=2 By ‘ (45)
where dm = 0,2=1,42,--- and dl = 0,4=1,24=2,- - - are the

differences in the order numbers between the two modes.
With the help of (15), we obtain, for example,

_ tan 6 dmwx + dl arccos (I/u)
a (- ey

(46)

for the classical uniform core index. Most perturbations
are random and of a kind which strongly favors coupling
between neighboring modes having a long beat wave-
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length or small x. The combinations dm = 0, 1 and
dl = 0, 41 are therefore of particular importance. More-
over, the nature of the perturbation excludes certain
transitions; directional changes of the guide axis, for ex-
ample, permit only dl = 1. Even with these restrictions,
the x-values of neighboring modes of the cylindrical step-
index, as obtained from (46), are functions of m and [ that
are too complicated for a rigorous evaluation of mode cou-
pling in a multimode fiber. All studies so far have therefore
used approximations for the x-values similar to the one
obtainable by applying (45) to (21). In that case, if
g — o, the minimum x-value between neighboring modes
is

_ tan 6 (47)

U
Ba? a

K =

for the uniform core.

As an important source of mode coupling, let us con-
sider the effect of random directional changes of the axis
of a multimode fiber of the classical type (uniform core).
We assume that we know the “power spectrum’ ®(x) of
the curvature. The power coupling coefficient pertaining
to two modes with phase lag & is then

C = 1®(x) (akny)? = dv?/8A. (48)

Because of our approximation (47), C is a function of
% only and not explicitely of m and I. To simplify our prob-
lem even further, we assume that also the loss distribu-
tion, which may be caused by a combination of the loss
phenomena discussed earlier, is only a function of u. We
therefore write it as a(u). In that case, the transition to
a mode continuum permits us to reduce the coupling
among all M/ modes to some form of diffusion phenomenon
governed by a partial differential equation of the form [34]

i(Ct_?Q) =a(u)§9-.

49
u o, dz (49)

where @ (u) is the power distribution in the mode groups
characterized by u.

No matter what power distribution is excited at the fiber
input, coupling and the loss processes involved eventually
establish a dynamic equilibrium which transforms @Q(u)
into a distribution P(u), such that @ = Pexp (—Az),
where P is the lowest eigenfunction and A the lowest
eigenvalue of (49). In other words, the power distribution
assumes a function which minimizes the loss 4. Equation
(49) then becomes

2 (C 313) = [a(u) — ATP. (50)
ou ou
Note that P(u) is the far-field power density discussed
earlier in the limit that ka — <.

A good phenomenological description of measured re-
sults [357], [36, fig. 5] which leads to the Poschl-Teller
differential equation [227, [37] is provided by
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U
a(u) = etan? —— .

K4

(51)

For this loss distribution and if we assume ®(k) = &,
to be independent of %, the lowest eigenvalue A of (50)
obeys the relation

5 — 2AA
c_l—l—e/A.

One of the best fibers made to date had for example [35],
[36]), A=1 percent and e~ A~ 1 dB/km; hence
®, = 0.0023 k. The results do not change significantly
if &, rather than being independent of &, is a slowly de-
creasing function of x with &, = ®(&max). To understand
the physical significance of the value obtained for &,, let
us assume that ® results from a number of minor, but rela-
tively abrupt, directional changes distributed randomly
over 1 km of fiber length. Let the directional change be 0.1
degree of angle occurring within 0.1 mm of fiber length
(radius of curvature 57 mm). In that case, 76 directional
changes per kilometer are sufficient to cause the value
P, obtained above. Note that it is the change of curvature,
not curvature itself, which produces coupling and cou-
pling loss. As noted earlier, a much stronger, but constant
curvature of 15 mm radius produces an elimination of some
high-order modes, but essentially no loss, if these modes are
not, excited and coupling is abscent.

A study of the parabolic profile for the case ¢ = 0
(abrupt loss increase at u = v) can be found in [38].
In that case, ¥ = &max for all modes so that only ®(zumax)
must be considered. It leads essentially to the relation
(52) with € = 0.

(52)

IV. DELAY DISTORTION

A number of promising applications of fibers are in
communication systems which utilize some form of digital
envelope modulation of the optical signal [5]. Aecord-
ingly, fiber performance is usually characterized in terms
of the degradation of an optical pulse propagating through
the fiber. We shall follow this practice; alternative descrip-
tions like the baseband frequency characteristic of the
fiber can, at least in prineiple, be obtained from the above
results by a simple Fourier transformation [39]. The
delay per unit length of a light pulse at a given carrier fre-
quency f, 18

_lds
codk

. (53)
f=fo
If the carrier has a spectral width B which is broad com-
pared to that of the detected pulse envelope, the pulse
spread per unit fiber length as a result of the change of
dB/dk with f is approximately [40]

1B p a6

T = =

el 4
¢ fol dit (54)

f=s0
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The propagation constant 8 is a function of k, not only
beeause the index changes with frequency (material dis-
persion), but, in addition, because 8 in (5) is a funetion
of the v-value which in turn is proportional to frequency.
This effect is here called “waveguide dispersion.” A third
pulse impairment is a consequence of the fact that (53) is
a function of the mode number, so that a pulse spread
arises in multimode fibers even if the frequency dependence
is neglected.

As far as their effect on the signal is concerned, material
and waveguide dispersion are interrelated in a compli-
cated way; however, by computing one in the absence of
the other, we can show that the material effect usually
dominates and the waveguide effect can be neglected.
We assume first that the carrier is a plane wave propagat-~
ing in a dielectric of index n( f). We have 8 = nk and,
since dk/k = df/f = —d\/\, we obtain from (54)

. (55)
A=c/fo
The coefficient N2d?n/d\? computed from index data of a
silica-rich core material [417 is plotted in Fig. 10. Also
shown is the result of a direct measurement of the effect
[427 at a wavelength of 0.8 wm. Typical luminescent
diodes made from Al-Ga—As have a spectral width (be-
tween 1/e points) of 4 percent and hence produce a 7 of
4 ns/km when operated at 0.8 um [43]. The effect could

be substantially reduced, if such sources could be operated -

at longer wavelengths, possibly by using In—Ga—~As instead
of Al-Ga—As [44].

Next consider a classical (step-index) fiber made from
a dispersionless material. To calculate d8/dk, we write
(30) in the form

B ds Py P,

e Sedl 2 2
rae - P TP (36)
and obtain with the help of (4) and (6)
g1 w? w? o
% — &[62 _.{_;—2_71]%11,2 + (n1 — nz) 1}7 (1 -+ 2]1).
(57)

In order to compare this with the coefficient in Fig. 10,
we have plotted

(ny — ng)—kd?8/dk? (58)

as obtained from (57) for the fundamental mode versus »
in Fig. 2. The coefficient reaches a maximum at v = 1.2,
but decreases to about 0.28 at a typical operating point
of v = 2. Thus kd?8/dk? = 0.4 to 0.04 percent for A = 1
to 0.1 percent, as compared to A%d?n/d\? = 3.1 percent at
0.8 um wavelength.

Waveguide dispersion coefficients as high as those indi-
cated in Fig. 2 oceur in multimode fibers only for those
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Fig. 10. Material dispersion coefficient for silica-rich core [41]
plotted versus wavelength. Dot indicates measured value [42].

modes which are operated relatively close to cutofi. Even
if these modes are fully transmitted, they constitute a
sufficiently small number to have little influence on the
pulse distortion as far as their waveguide dispersion is
concerned. In these fibers, it is the delay difference be-
tween individual modes which distorts the pulse.

To study this effect, we introduce (17) into (57) and
write

éﬁ_@ﬁ’f[ _me]
e 8 2 h+ (w4 B2’

The term n.?%k/B is easily identified as the ray-optics ap-
proximation for d8/dk. As a mode approaches cutoff, w and
{ can be small enough to reduce the ray optics delay n,2k/8
by a significant amount, producing what is known in the
slab structure as the Goos—Haenchen shift {97, [45]. In
fact, for { = 0, this shift coincides exactly with that of the
TE slab modes [45]. Most modes in multimode fibers
propagate sufficiently far from cutoff that n,?k/8 is a satis-
factory approximation for all. Let us now estimate the
magnitude of these delays directly for the general class
of graded profiles (20), of which the classic step-index pro-
file is a special member. We use (21) and (53) to find [23]

t()_n_02lf<1___ 4A u_2)
v “cﬁ g+ 2 v?

which reduces to ng?k/c8 for g — «. For arbitrary g, the
delay of the mode of lowest order is ¢{(0) = no¢/c. The
highest orders have u = v and {(») = (ny/c) (1 — 2A)12
The maximum difference is therefore tnax — tmin = NoA/c:
for g — . If A = 1 percent this amounts to about 50
ns/km.

Optimal equalization occurs for [23]

(59)

(60)

g =2 2A (61)

which characterizes a profile very close to the parabolic.
In that case t(0) = {(v) = no/c, but all other modes have
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t(u) < mo/c, the fastest arriving at ¢(v/V2) = noA?/8c.
For arbitrary g, the delay difference between the slowest
and the fastest mode is

Alg —2+4248)/(g + 2),
2<yg

(9 — 2 + 44)%/32,
2 -2A<g<2
o
tmax - tmin = — (62)
“ 1 (g - 232
2—4A<g<2—2A

A(Z*QA—Q)/(Q+2)’
1 <g<2—4A

Evidently, good equalization occurs in a very narrow
region of g values and requires accurate control of the
grading process during the fiber or preform preparation.
That these requirements can be met very closely was
demonstrated by the early Selfoc fibers [46 ], whose profile
had a g-value of very nearly 2 — A in a large part of the
cross section [47 ]; experiments proved that these fibers
showed indeed an amazingly good mode equalization
[48]. For those profiles, which belong to the class (20),
but whose g-values deviate from the optimal, we can cal-
culate the maximum delay spread as a function of the
maximum deviation dn of the index from the optimal any-
where between r = 0 and r = a. The ratio dn/nA is called
the profile error; we use it as a parameter in Fig. 11.
Plotted in Fig. 11 is the index difference or the numerical
aperture which would lead to a given delay spread per
kilometer for various profile errors. Also shown is the
spread caused by material dispersion in silica fibers, when
the carrier source is an Al-Ga—As luminescent diode
operated at 0.8 um. ’

Equation (62) must be considered as an upper bound
for the pulse broadening possible as a result of mode delay
differences. The actual broadening is usually much smaller;
two effects are responsible for this. One is the selective
loss of certain modes or mode groups as a result of the loss
effects discussed in Section ITI. The other is mode coupling
which tends to average the delay by “switching the light
around” among the various modes. To study the first
effect, consider the example of a graded-index fiber whose
material loss varies in the fiber cross section according to
the relation (31). The reason for such a variation was
explained earlier. Let us exclude the singularity in the
vicinity of the parabolic distribution for the time being
and assume that the g-value of our fiber deviates substan-
tially from 2. A profile error of 10 percent, for example,
corresponds approximately to ¢ = 3. If the material loss
were the same everywhere and all modes were excited
equally, the arrival of all modes at the end of a transmis-
sion path L would fall into the interval

Lno/c < T < (Lmo/c)A(g — 2)/(g + 2),
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Fig. 11. Relative index difference A and numerical aperture which
produce delay spread plotted along absissa for various profile
errors dn/ngA.

where T is related to the mode parameter w by [23]

g—2u

PR (©)

Tu) = —A
¢
The power density per unit time interval would be pro-
portional [237] to T%¢. If the two loss values a; and oy of
(28) are different, we find the loss as a function of u from
(31), and using (63), can write the power distribution as
proportional to

T%9exp [—0.46 (a2 — ao)cT/noA(g — 2)].  (64)

with @ and o in dB/km. The rms value of this distribu-
tion is
, o Ma (1 —2/g) (A +2/9)1"
¢ 0.86¢g (02 — o)

(65)

as long as ¢ < T'(v) of (63). The rms value is a good
measure of the expected pulse broadening and of the
limits of the information rate of transmission [497]. Note
that (65) is independent of the transmission distance L.
As an example, let us assume ap = 20 dB/km, a = 40
dB/km, A = 1 percent, and ¢ = 3. As long as L > 2 km,
the rms width can approximately be computed from (63)
using 7?7 as the power distribution. One finds an rms
value of 2.8 ns/km. For L > 2 km, (65) applies and the
rms width asymptotically approaches a value of 3.5 ns.
This obviously desirable limitation of the pulse broadening
is achieved by extinguishing some of the high-order modes.
If these modes represent a necessary and important part
of the carrier as in the case of an incoherent source, the
overall loss resulting from this extinction may represent
an intolerable penalty payed for the improvement in
signal distortion. For the example discussed earlier, this
penalty is 19 dB after 4 km. At that point, the rms value
of 3.5 ns is about 3 times shorter than that expected with-
out mode-dependent loss.
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Mode coupling produces a similar signal improvement
[507. In fact, all by itself and if limited to trapped modes,
it achieves this improvement without a loss penalty. In
practice, the influence of mode coupling is difficult to
separate from the loss effects. In the presence of both, the
signal improvement as well as the loss penalty are compli-
cated functions of the interdependence of coupling and
loss in the various modes [51]. So far only the simplest
models have been considered. A convenient treatment of
the problem begins with (49) considering the time de-
pendence of Q(u,T,2) by an additional term ¢(u)dQ/dT
with ¢ from (60) and 9Q/07 being the partial derivative
with respect to time. Closed-form solutions of the result-
ing partial differential equation have been given only for
the step-index profile, large ¢ in (51) and C(u) = con-
stant [52]. However, it can be shown [50}[52] that,
for a transmission length L >> A/C(v), when the dynamic
equilibrium distribution is established, the power output
becomes a Gaussian in time, whose rms value ¢ increases
as L'2. This relation obtains under a wide variety of con-
ditions independent of specific fiber characteristics. The
loss penalty is then equal to 4.34 AL in dB with 4 being
the equilibrium loss coefficient obtained from (50). Let
oo be the rms width of the output power distribution in
the absence of coupling and (mode-dependent) loss. Since
oy is proportional to L, the product

ag

2
G=434(>ALmdB (66)

%
is independent of L and has come to be used as the figure of
merit of a given (or artifically introduced) eombination
of coupling and loss. ‘

The most desirable loss distribution would be described
by a small coeflicient € in (51), leading to a sharp increase
of a(u) at w = v, which accounts for the transition from
trapped to leaky modes. Most discussions of the problem
therefore consider a first approximation with ¢ = 0. A
variety of coupling functions C'(u) have been considered,
among them the class [53]

Clu) = C) (v/u)". (67)

To summarize the results, Fig. 12 presents a plot of G(z)
for ¢ = 0 and a uniform core index. The figure of merit
of the parabolically graded fiber [38] with ¢ = 0 1is
G = 0.27.

V. CONCLUSIONS

We have tried to give a consistent picture of the theory
of the optical fiber, as far as it is most relevant to design
and systems questions in optical transmission applications.
In most cases, we have opted for clarity and simplicity
rather than utmost accuracy and hope that those interested
in better accuracy can find it in the references cited. The
main approximation underlying all problems discussed
here is the assumption of essentially forward directed

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1975

propagation and, following from that, transverse electro-
magnetic field solutions. We have used the WKBJ ap-
proach for all multimode fibers, even in the case of a uni-
form core index, because it provides a clear mode picture,
a simple correspondence between modes and rays and an
effortless transition to a mode continuum. In addition, it
is easily extendable to graded-index profiles. Higher order
approximations extending beyond the paraxial results are
obtained where necessary, as, for example, in the computa-
tion of the group delay for near-parabolic profiles. Em-
phasis was placed on those characteristics of fibers, which
deviate significantly from those of slab or film guides; this
is particularly important for multimode fibers which
transmit a large number of modes with high azimuthal
orders. Practical aspects of fiber design, as, for example,
the influence of a finite cladding width, curvature, cross
sectional loss variations, material dispersion, and the effect
of index profile tolerances were assessed. The large variety
of potential applications made it unpractical to consider
specific designs; we hope that the results are presented in
a sufficiently simple way so that the reader can use them
to solve his specific problems.

APPENDIX

WKBJ APPROXIMATIONS FOR
CYLINDRICAL STRUCTURES

The general wave equation becomes separable in a
cylindrical coordinate system (r,¢,2), if the refractive
index n is a function of r only. In that case, the differential
equation for the radial field dependence E(r) assumes the
form

2

Z]E=0.(AD

7

2E 10FE

s Bl E2nl(r) — 8 —
pw +MT +[ n*(r) — B
We set,

E = Fexp [kS(r)] (A2)

where F is a coefficient independent of r. Upon substitu-
tion into (Al), we have

k8" 4+ (k8N + kS /r 4+ (kn2 — B — IB/r?) = 0
(A3)

where the primes denote differentiation with respect to 7.
We now assume that n changes slowly within a distance
comparable to the wavelength A, so that an expansion of
S(r) in powers of N converges rapidly. (For the classical
structure, we exclude the area around the index step; the
step can later be accounted for by suitable matching
conditions.) After substituting

1
S(T)=SO+ESI+"' (A4)

into (A3) and equating equal powers of A, one obtains the
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following equations for the first two terms of the expan-
sion (A4):

— (kSy)? + (k22 — B — 12/72) =0
k8o’ — 2kSy' Sy + kS /r = 0.

(A5)
(A6)

Integration of these equations yields
So=x [t g/h = By ar  (AT)

and

S1 = (2/4) In (rn? — p¥2/k2 — BB/k?) (AS)

plus constants of integration which are omitted for clarity.
In order to construct the complete solutions, we have to
distinguish between three regions (see Fig. 4 or 6): the
tube in which propagating field conditions obtain (S, real),
and the two regions inside and outside of that tube in
which S, is imaginary.

Let us consider the classical index distribution of Fig, 4
as an example. In the case of lossless propagation, stand-
ing-wave conditions obtain for the cross sectional field
distribution in the propagation region. Hence, in order to
obtain a solution of the form cos (kSy + ¢), we must
consider both signs of (A7) in this region. The phase term
¥ is determined by the matching conditions at the inner
caustic. In the case of the classical structure, we have [20]
Y = —m/4. The field outside the propagation region
vanishes for r — . We therefore choose the sign in (A7)
to produce a decaying exponential for increasing ». To
obtain the field solutions in the propgation region (n = ny)
and in the cladding region (n = n;), we use the abbrevi-
ations (9) and (10) in (A8) and (A9), insert the latter
equations into (A4) and finally write (A2) with the help
of (A4) in the form

E(r) = <

where the constants F; and F, have heen chosen such that
the solutions coincide with the Debye approximations of
the Bessel functions J,;(ur/a) and K;(wr/a), respectively
[19]. They describe the Bessel functions with surprising
accuracy even to the lowest order numbers. Fig. 13 illus-
trates the example m = 2, [ = 3.

Just as in the case of the more accurate solution (2), the
relations between % and w and between F; and F, are ob-
tained from the match of the field solutions (A9) and
their radial derivatives at » = a. However, a satisfactory
solution for the majority of the modes of a multimode
fiber is based on the assumption F, = 0 which ignores

Fi1(2a/70r)Y2 cos [— Z + / @ dr/a]
alluw

Fy(ma/20r)1? exp [— / w dr/a]
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Fig. 12. Figure of merit G(») for coupling coefficients proportional
to (u/v)Y, for ¢ = 0 (abrupt loss increase at u = 0), and a step-
index profile.

1
\4/ WKBJ — APPROXIMATION
\\ m=2

L =3

o

FIELD STRENGTH

b~
- cAUSTIC—2
£ -4

Fig. 13. Transverse mode field for m = 2 and ! = 3 (solid line).
WKBJ approximation coincides with exact solution everywhere
except as shown by dashed line, .
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—<r<a

U

> (A9)

r>a

the evanescent fields altogether. In this case, propagating
modes exist [ 207], [22] when

/ ddr/a = (m— w (A10)
lafu

where m = 1,2,++ is the meridional order number. As the

m/4-term on the right is significant only for a few low-order

modes, it is neglected in the text.
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