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Abstract—The rourid dielectric waveguide exhibits a surprising

variety of characteristics that are not accurately inferable from the

slab model. The forceful effort of recent years has grately extended

the knowledge of tI+ese structures and added new and exciting

modifications. An attempt to unify these results in a simplified

picture is made. Specific phenomena relevant to optical fiber design

and fabrication are then brought into focus. Some of the problems

discussed are cross sectional loss variations, various core index

profiles and the tolerances required in their preparation, the neces-

sary cladding hickness, directional changes, and sources of mode
coupling affecting signal distortion and loss.

I. INTRODUCTION

T HE LAST few years have seen a rapid increase both

in technological know-how and theoretical under-

standing of optical fibers and, along with it, a new variety

of fiber structures. At the same time, the issue of ma-

terial loss, which had barred fibers from the communica-

tions field longer than necessary, was so convincingly
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tories, Hohndel, N. J.

solved that other aspects are now becoming a prime con-

cern of optical communications research. This then seems

to be a good time to take stock, to organize the knowledge

gained, and to assess the available options. Accordingly,

a great number of review articles have appeared in a rapid

sequence all over the world. To name only the most recent

in the order of their appearance, there is an article by
Maurer [1] addressed mainly to the technology of fiber

preparation. Opto-Electronic.s devoted its July and Septem-

ber issues of 1973 to the subject of fiber optics featuring

reviews of the state of the art in Britain [2] and Germany

[3]. An article by Ohnesorg~ [4] advanced some of the

less conventional ideas of communication systems appli-

cation for optical fibers. lliller et al. [.5] have prepared

a very comprehensive review of the current knowledge

relating it to potential applications in the conventional

communications network. The quite different though

equally immediate potential of fibers for military applica-

tions becomes apparent in an article [6] which appeared

in thk TRANSACTIONS in December, 1973. The conven-

tional technology of fiber bundles [7] seems to be more
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readily applicable in this case, where multiterminal infor-

mation transfer over short distances on board aircraft or

ship is the objective. To complete our “review of the re-

views,” we should mention a 6-page summary of the state

of the art [8], interesting for those looking for a concise

overview, and, of course, some of the textbooks available

on the theory of dielectric wave guidance [93-[11 ]. It is

quite likely that review articles on optical fibers will con-

tinue to appear within similar or even shorter intervals.

An English-language paper on the very extensive and

successful work in Japan [12], for example, would be

quite welcome. On the other hand, those interested in the

field are by now quite well informed about the history and

breakthrough of communication-oriented fiber optics and

can find more than 300 references on the details in the

reviews cited earlier.

Rather than adding to this list, I wish to narrow the

objectives of this paper in an attempt to present a concise

and unified picture of the propagation characteristics of

the round dielectric waveguide both in its ideal and its

imperfect state, in order to provide some simple results

relevant to design and systems questions in optical trans-

mission applications. Many of these results deviate suf-

ficiently from the well-known characteristics of the two-

dmensional dielectric-film model to arouse some caution

as to the validky of the usual extrapolations of film con-

cepts to the fiber description. One of the objectives of this

article is, therefore, a closer look at the limits of our knowl-

edge of the round dielectric structure and the identifica-

tion of areas where further investigations are necessary.

In line with these objectives, references are cited merely

to direct the reader to additional material on a given sub-

ject matter and are not necessarily the first or only pub-

lications on the subject.

We begin in Section II with a discussion of the guidance

concepts governing the round dielectric waveguide. Aside

from the classical core-cladding structure, thk includes

cylindrical graded-index profiles and slab-supported guides.

Section III takes a look at realistic fibers in a practical

environment and attempts to incorporate the influence

of cross sectional loss variations, finite claddlng thickness,

directional changes, and random imperfections in the

laws of propagation. The emphasis is on measurable vari-

ables and measured results. The dkpersive effect of the

material and the waveguide, delay between fiber modes,

and the resulting signal distortion are the subject of Sec-

tion IV.

II. GUIDANCE PRINCIPLES

Trapped or lossless propagation of light in dielectric

waveguides relates to idealized structures which are

straight and unperturbed in propagation direction, have

unperturbed surroundings (infinitely thick cladding) and

are made from lossless materials. This is the structure we

discuss in this section, confident that slight modifications

will later suffice to adapt the results to practical condi-

tions; perturbation methods to achieve this are dkcussed

in the next section. The classical clad glass fiber [7] traps
light by total internal reflection at the core boundaries

where the index drops to the slightly lower cladding value.

Modern structures like the graded-index fiber whose index

decreases gradually outward from the axis employ a con-

tinuous focussing process to achieve trapping, which can

be considered as a kind of distributed internal reflection

[13]. Propagation in the single-material fiber [14] is not

characterized by an index change at all, but solely by the

cross sectional configuration. Whatever the underlying

principle of guidance, all structures can be designed to

support one or many trapped modes of propagation. Be-

ginning with the classical clad structure, we shall discuss

its single-mode configuration in greater detail, hoping

that this will aid in the understanding of the other two.

The round clad fiber is one of the few dielectric wave-

guide structures, for which Maxwell’s equations have

rigorous (though fairly unwieldy) solutions and these

have been discussed in many places [9], [110]. The very

existence of such solutions has probably kept theorists

from searchbg for simplifying approximations even after

such approximations were found, and recognized as useful,

in the case of the parabolically graded index profile (see,

for example [15]). The approximations recognize the

fact that, ultimately for technological reasons, the change

from the core index nl to the cladding index n, is typically

small. In other words,

nz = nl(l – A) (1)

and A << 1. Under these conditions, field solutions can be

found both for the flat and the graded core index profile,

which are essentially transverse electromagnetic and

linearly polarized [1.5]–[17]. Strictly speaking, all these

solutions (except for the fundamental) are superpositions

of more complicated field solutions that appear degenerate

in these approximations, buti in reality break apart upon

propagation over long distances as a result of small differ-

ences in the propagation constants, The approximations

are completely satisfactory, however, in predicting the

modal powler distributions and group velocities; this is

essentially what is needed in fiber-optical communication

systems, which, for the time being, are restricted to direct

(power) modulation and detection for economical reasons.

In the case of the classical fiber structure, which has an

abrupt index step at the core-cladding boundary, the ap-

proximation ignores essentially the slight difference (of

order AZ) in the matching conditions for the electric and

magnetic field components tangential to that boundary.

As a result, the boundary conditions simply require con-

tinuity of all transverse field amplitudes and their radial

derivatives through the boundary. In a cylindrical struc-

ture, these conditions can be met by the well-known trial

solution

where k = 2r/h is the free-space wave number, a the core

radius, ancl E(a) the maximum field amplitude at the

interface; w and w are a pair of parameters,. whose mutual

interrelation is determined by the matching conditions
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Fig. 1. Dielectric profile of the single-mode fiber with uniform
core index.

[16], [17]. Howuand wrelate tothe propagation con-

stant @andthestructural parameterv (usually called the

v-value) is evident from the dielectric profile sketched in

Fig. 1. We find

v = (tLz + w2)1/2 = ak(nlz — n.22)1/2M aknl(2A)1/2 (3)

and

19’/k2 =n,’+ (n12–nz2)w2/v2. (4)

In general, the problem of characterizing the modes of

a certain fiber can be approached in the following way:

the measurement of a, A, and the wavelength of operation

determines v. The parameters u and w then result from

(3) and the (transcendental) “characteristic equation”

derived from the matching conditions [16], [17]. Equa-

tion (4) finally permits the computation of e. For many

technical problems, u, w, or D are of little direct use, except

as a basis for calculating the more important mode power

and group velocity relations, For example, the question

of how bulk loss differences in core and cladding affect

the mode loss requires some knowledge of the power dis-

tribution in core and cladding. In the classical fiber struc-

ture, the mode power and group velocity relations can be

derived from an auxiliary parameter [17], [11]

J?(u)
jl=–

JZ+I(U)J,-,(U) “
(5)

If P is the total power in a certain mode and PI and Pz are

the power fractions in core and cladding, we find [17]

5=1_P2

P
— = (1 + j,)w’/v2.
P.

(6)

The power density at the core-cladding interface, averaged

over the circumference, is

p(a) = ~z jtw2/v2. (7)

The density p (a) determines the amount of mode loss

caused by imperfections in the interface. The group ve-

locity relations of interest are discussed in Section IV.

This outline would be of little help to the reader without

some knowledge of how to obtain u or w. Before this is

discussed, we must take a closer look at situations of prac-

tical interest and the numbers of modes involved in these

cases. The approximate theory, on which our discussions

are based, stiptiates that the number of independent

field solutions (degenerate mode groups) is equal to the

number of zeros of all Bessel functions JZ which are smaller

than v, plus the fundamental solution [16], [17]. If

v < 2.4, only the fundamental mode propagates. This

mode has the transverse field distribution JO (ur/a) in the

core. The cladding field decays monotonically with the

distance from the interface; it reaches farther and farther

into the cladding as v decreases. A theory which considers

the cladding thickness as unlimited finds this mode to be

trapped even as v approaches zero.

There are two distinctly different operating conditions

for fibers used in transmission systems: single-mode and

multimode operation. The former avoids the signal-

impairing effect of mode delay differences and therefore

provides the ultimate in transmission bandwidth. For this

reason, the single-mode fiber has a definite potential for

wide-band optical communication; it is likely to gain in

importance once sources become available [18] that have

sufficient spatial coherence to excite the one mode of the

single-mode fiber efficiently. On the other hand, single-

mode operation limits the core diameter and the index

difference as well as the tolerances acceptable for these

two parameters, a fact which may complicate large-scale

fabrication and field splicing of such fibers. Secondly, and

maybe more importantly, since the single-mode fiber

accepts only the equivalent of one radiation mode from

any source, it is practically useless in combination with

incoherent sources (luminescent diodes) and deficient,

if the source is multimode. For all these reasons and be-

cause recent fiber art has devised schemes of alleviating

the signal impairing effect of mode delay differences in

multimode fibers, multimode operation is at least of equal

importance. Typically, such fibers are designed to support

a great number of modes in order to fully bring their ad-

vantages to bear.

Coming back now to the computation of the parameters

u or w from v, we distinguish the two cases of single-mode

and multimode operation. AS we shall see, the second case

allows a rather summary treatment of all modes yielding

closed-form approximations of satisfac~ ~ry accuracy.

Rather than enumerating similar approximations valid

in specific regions of the single-mode regime, we simply

plot here all important parameters characterizing the

fundamental mode in a way that allows an accurate read-

ing everywhere. For this reason, the ordinate of Fig. 2

is chosen linear around unity and logarithmic below.

Plotted along the abscissa is the v-value in the region

between v = 0.6 and 2.4, which covers the single-mode

regime of interest. In addition to the parameters u and w,

we have plotted w2/v2, which determines ,R according to

(4), ~Ow2/v2, which is proportional to p(a) of (7), and

(1 + ~O)W2/V2, which determines the power distribution
(6). Accordingly, Pi/P can be read off the left side and

P~/P off the right side of Fig. 2.

Although, theoretically, the fundamental has no cutoff

as v decreases and hence propagates even at lowest fre-

quencies, it is obvious from Fig. 2 that the power con-

tained by the core is only 0.1 percent at v = 0.6 and de-

creases rapidly for lower v, making effective guidance
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Fig. 2. Various characteristics of the fundamental mode in the step-
index fiber plotted versus the v-value.

below v = 0.6 virtually impossible. More interesting than

the lower bound is the region towards large v, because, at

optical wavelengths, the objective is in making the core

radius a and hence v as large as possible, to alleviate fabri-

cation and splicing tolerances. A safe operating point

may be v = 2. Any remaining effort in maximizing a is

limited to a reduction of A. The parameter A, on the other

hand, must at least be of the order of 0.3 percent if ex-

cessive bending loss is to be avoided; thk condition is

explained by (41) of Section III. As a result, we find with

the help of (3) that the core diameter of the single-mode

fiber can measure 5 to 6 wavelengths at the most.

Plots similar to Fig. 2 can be produced for all modes of

the classical fiber structure when the region of v is ex-

tended to larger values [17]. Such detailed knowledge of

every one of the hundreds of modes propagating in typical

multimode fibers can be rather confusing. On the other

hand, one arrives at very satisfactory closed-form expres-

sions of general validity for all but the very lowest order

modes, if one makes use of the Debye approximations for

the Bessel functions [19]. Although these approximations

are rather simple and straightforward as far as the mathe-

matical side of the problem is concerned, a direct deriva-

tion from physical prin~iples has several side benefits.

One is an effortless association of modes with rays [20],

the other is an easy extension of these principles to fibers

with a nonuniform core index, which will be of use later
on. The direct derivation uses the method of Wentzel,

Kramers, Brillouin, and Jeffreys (WKBJ) modified to

apply to cylindrical structures ~21 ], [22]. This approach

is outlined in the Appendix. The following more casual

argument is based on the same ideas but requires less

mathematics [23].

Fig. 3. Wave vector diagram in the propagation region of a multi-
mode fiber.

(a)l

[b),

Fig. 4.. (a) Dielectric profile of the classical fiber structure (uniform
core index) showing squared magnitudes of vector components for
azimuthal mode order 1.

We assume the. existence of locally plane waves in the

core guidance region. Fig. 3 shows a decomposition of the

local wave vector (pertaining to a given mode) into its

components in the cylindrical coordinate system (r, O, z).

The axial component is the propagation constant 13of the

mode. The azimuthal periodicity indicated by cos 14 in
(2) results ir~ a +cornponent z/r at r. Since the magnitude

of the wave vector is nk, the radial component becomes

q(r) = (lc2n2 – ~z – 12/r2) 1/2 (8)

with n = nl in the core and n = nz in the cladding. Fig. 4

is a plot of a dielectric profile similar to Fig. 1, showing

the square magnitudes of the various components as a

function of t,he radius. Within the region la/u < r < a,

in which q is real, we introduce a parameter

This region represents the core area, in which a periodic

field solution exists. Outside of this region, both in the

core and in the cladding, the radial component becomes—.
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imaginary, causing the mode field to decay monotonically

with the distance from the boundaries. The decay param-

eter in the cladding is

ti = (W2 + 12a2/r2)112. (lo)

The cylindrical surface of radius la/u in the core repre-

sents a caustic [20] for rays which travel within the region

la/u < r < a and have the direction of the local wave

vector. A cross sectional projection of one of these rays is

shown in Fig.. 3(b). The entire group represents the

‘(congruence” of rays [20] associated with the mode

under discussion. Before we define this mode more fully,

let us digress briefly to take a closer look at the ray picture.

The angle which all rays of a congruence form with the

axis obeys the relation

sin 0 = u/alml.

When the rays leave the fiber end face

creases to

sin 9 = u/ak

as a result of refraction. For small ~, if

(11)

into air, sin 0 in-

(12)

we were to set up

a screen perpendicular to the axis at a distance alt mm

away from the end face, all these rays would impinge on

the screen approximately at a distance u mm from the

axis. In typical multimode fibers, ak may be of the order

of 100 and u varies between O and v, the latter being of the

order of 30. In accordance with lens optics definitions

the product of the refractive index and the sine of the

maximum ray angle, that is,

nl sin em.. = v/ale = (nlz – nZ2) 1/2s nl(2A)1/2 (13)

is called the numerical aperture of the fiber.

A complete identification of the modes of the cylindrical

structure requires two mode numbers: the azimuthal

order number discussed earlier and a meridional order

number m, which identifies the number of field maxima

of the radial field solution (this count includes the maxi-

mum at r = O for 1 = O). The WKBJ approximation for

m is obtained from a count of the number of half periods

comprised within the radial phase change between the

caustic and the interface. This results in the relation

/

1
m~ . d dp (14)

llu

with p = r/a. A rigorous and more accurate derivation

of this relationship can be found in the Appendix. How-

ever, (14) gives usually a satisfactory description of the

modes of a typical multimode fiber. In the case of the

classical index profile, we can solve (14) after inserting

(9) and obtain

m = (1/T) [(u2 – 12)1/2 – 1 arccos (l/u) ]. (15)

Fig. 5 illustrates this relation for different ratios u/v.

Modes are marked in this plot by a uniform raster of spots

of density l/v2 (see upper right of Fig. 5). Each spot to

the left of the line u/v = 1 represents a degenerate quad-

ruplet of trapped modes of different polarization or orien-
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Fig. 5. Plot of mode number 1versus m for cliff ereut parameters U,
all normalized with respect to the o-value; density of modes 1s
l/v2 (see upper right); all spots to left of u/v = 1 designate de-
generate groups of trapped modes.
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Fig. 6. (a) Dielectric profile of a graded index fiber showing caustics
for mode characterized by u, L (b) Cross sectional projection of a
ray characterizing above mode.

tation. There are no spots along the ordinate since
m=l,2,. ..; spots falling on the abscissa (1 = O) repre-

sent doublets [11]. If v >>1, as for typical multimode

fibers, we can count the total rmmber of modes simply

by integrating (15) with respect to 1. The result is the

mode volume

/

v
M=4 m(1) dl = v2/2. (16)

o

Given a certain mode (m,l), Fig. 5 provides the u-value

of that mode. The characteristic ray (or group of rays)
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of that mode is then defined by (11) and the caustic at
Y = aZ/U. Equation (4) and the relation W2 = V2 — U2

yield the propagation constant ~. As for the power dis-

tribution, a more accurate match of the field solutions

(A9) at the interface is necessary to obtain the approxima-

tion

[
~m::l–

1

h + (w’ + P) ‘/21
(17)

With:h = 1 for 1 = O and h = O for 1 # 0, By using thk

relatlon in (6), the cladding power becomes

Pu2/v2
P, =

h + (W2 + 12)112“
(18)

Note, tliat Pt = P/ (h + 1) at cutoff, where u = v and

w = il. Thus, contrary to the mode behavior in the slab

(or for 1 = O, 1 in the fiber), a good fraction of most fiber

modes is concentrated in the core even at cutoff. This is

a result of the ,faet that the cladding field solution (A9)

decreases as r-z at cutoff, where @ = l/r.

The convenience of detection and measurement in the

optical far-field renders the modal far-field distribution

often more important than the mode field itself. We recall

that the exit angle e of a ray characterized by m and 1

obeys the relation (12) and is only a function of u and not

explicitly of m and 1. We can therefore infer that, as
ka ~ co, the far-field radiation of all modes characterized

by u converges on a cone with half-apex angle 8. A dif-

ferent, though somewhat more general, interpretation of

the same relationship stipulates that the power dP (u) of

all modes falling between two, lines characterized by u

and u + da in Fig. 5 can be collected in & ring of radius u

and width du on a screen a distance ak away from the

fiber end (measure u and ak in millimeters, say).

Fig. 6 depicts the dielectric profile and a ray projection

in the case of a graded core index profile. The area of

periodic field solutions is now limited by two caustics.

Rays characterized by u exit at the angle e only, if they

leave the guide exactly from the center (only possible for

meridional rays). All other exit positions of rays charac-

terized by u lead to exit angles smaller than e(u). Ac-

cordingly, the far-field relations for ka -+ cc in the graded-

index case are ntk as simple as in the case of the uniform

core. A straightforward modification of ( 14) results in

the characteristic integral

1
m=–

/
‘2 [?c%2(r) – @z– P/r2]1/2 dr (19)

T
,1

where we have again neglected a small term additive to m.

A class of profiles of particular interest has the form

1

(1 – 2A/JU)112, p<l
n(~) = no Ig>1.(20)

(1 – 2A) ‘Iz, p>l

It includes the classical fiber with uniform core discussed

so far (g ~ m ) as well as the parabolic index dktribution

(g = 2); the latter is important because it provides an

@

a
s

(a) (b)

Fig. 7. (a) Sketch of single-material fiber showing vector diagram
in membrane. (b) Typical cross section showing membrane
length s.

effective equalization of the modal group velocities [133.

We return to the discussion of this effect in Section IV.

An exact solution of (19) is not known, but I have found

the approximation

‘+’[&Y’g’”=(S2(5J’U(Y
very $atisfac tory. It is exact for g = 2 and very good as

long ds g is not too large. The maximum error results for

g -+ ~ and can be inferred from a comparison with ( 15).

An integration of (21) similar to (16) yields the mode

volurhe

1 gv’
Afg =-—

2g+2

which can be shown [23] to be exact for all g withii~ the

limits of the approximations that apply to (19). As (2?)

shows, the mode volume of the graded profile is typically

less than that of the uniform core when both have the same

total index difference. Parabolic grading, for example

yields Mt = M./2.

The fiber configuration of Fig. 7 permits the trapped

propagation of a desired number of modes in a core which

is suspended between two membranes made of the same

material as the core [14]. Although there is no index

change between the core and the membranes, the latter

have a function similar to that of the cladding in previous

configurations. In line with the idealizations applied to

those, we assume for the time being that the membranes

extend to infinity to both sides of the core. To understand

the function of the membrane, consider the wave? vector

diagram of an arbitrary (plane) wave field in the mem-

brane (see Fig. 7) E24]. The large index change between

the membrane and the surrounding air enforces a trans-

verse wavenumber of a rnagnltude close to w/2b, where
~= 1,2,. .; and b is the half width of the membrane.
The vector summation yields

(‘)
2

lc2n12 = ~z + ~ + y2< (23)
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If the membrane field is part of a core mode, B is the

propagation constant of that mode and hence, with the

notation of Fig. 1,

~2
—

a’ = ()
~2+ Y’. (24)

Trapping of core modes requires that all field solutions

are oftheevanescent typealongthe membr~nesand hence

-ymustbe imaginary even forthesmallest ~,thatis, p = 1.

Consequently, u/a ~ ~/2b, where the equality denotes

cutoff for the mode characterized by u. Since per definition

u = v at cutoff, we can define an effective v-value of this

fiber configuration of the form

v, = ~a/2b. (25)

By using v. instead of v in (3) and all subsequent equations

as well as in Figs. 2 and 5 we obtain essentially all mode

characteristics of this fiber structure, including the condi-

tions for single- or multimode operation.

III. PROPAGATION LOSSES

Mode attenuation results first of all from the dksipative

and scattering loss of the core and cladding materials and

the interface between the two. Secondly, loss can be caused

by the finite cladding width and the (sometimes inten-

tionally) Iossy jacket around the cladding. Thirdly, a

radiation loss is suffered by modes which are not fully

trapped. All three sources of loss usually affect different

modes differently. Even small loss differences can cause

virtual extinction of some modes in comparison to others,

if the fiber is sufficiently long. In general, coupling of

modes as a result of perturbations along the fiber balances

the effect of loss differences by continuously transferring

power into modes otherwise lost. Ultimately, this transfer

causes a loss in all modes.

Let us first ignore the complicating influence of cou-

pling. This assumption seems quite relevant to potential

communications applications, since careful preparation

and handling of fibers has been shown to reduce coupling

to negligible amounts even in long fiber lengths [25].

Under these conditions a loss of, say, al dB/km in the core

and a’ dB/km in the cladding produces a mode loss

W (rn,l) = alP1/P + a2Pz/P. (26)

with PI and Pz from (6), If we ignore the case 1 = 1,
we have h = O in (17) and

U2
~1 = al + (CY2 — al) — (W2 + 12)–1’2.

u’
(27)

for the classical step-index profile. Fig. S is a plot similar

to Fig. 5 showing lines of constant aI. In the case of large

V, the loss of few modes exceeds al even if az k large. Similar

modal loss coefficients can be derived with the help of

(7), if a source of loss exists in the interface between core

and cladding.

I
kCj, = IdB/km

1.0

U=v

0.8 ‘\
\
\

aj/% = ldB/km

I d’== IdB/km

/

‘ “?u’++’a=-a’

&al=al+OY’(~N!!!!
‘\

0.6 \

0.4

0.2
+a, )

—0.1 0.2 0.3

mlv —

Fig. 8. Same plot se Fig. 5 (broken line is boundary for trapped
modes); solid lines are lines of constant loss for various loss phe-
nomena: al—leakage loss, aj /x—jacket loss, a~—-curvature loss,
~r—10ss as a result of cross sectional loss variation of the form (26).

A graded profile is generally obtained by adding or

exchanging one or more components in the host glass.

It is likely that the additive causes a certain excess loss

or, in the case of an exchange, that the loss of one com-

ponent is different from that of the other. In either case,

the loss variation is likely to follow the index variation

so that the loss at a distance ? from the axis becomes

no’ — ~’ (~)
a(r) = C@ + (a2 — CW)

~02 — ~’z “
(28)

The loss suffered by a given mode is in this case

\

w

//

m

~11 = a(r)p(r)r dr p~r)rdr (29)
o 0

where p(r) is the power density of that mode at r. To

solve (29) we use the relation [26]

P@=

-./
m n2(r)p(r)~ dr

/!

m

lcdk o
p(r)rdr (30)

o

and d@/dk = ct (u) from (60) of Section IV. We obtain

2 u’
w=ao+(a2-a o)- —

g+2v2”
(31)

Note that (31 ) does not converge into (27) for g ~ @, but

yields arI = a~. This is so because (31) is based on the

assumption of negligible evanescent fields, which was

introduced to obtain (19). This approximating assump-

tion is valid and useful in cases when both index and loss

vary within the regions of propagating field solutions

(between the two caustics), because the different extent

of these regions for different modes is then likely to be

the overriding influence in causing loss differences among

the modes. This effect disappears of course for g -+ w,
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and the second-order effects expressed by (27) are then

the predominant source of loss differences.

Although assumed infinitely thick in Section II, the

fiber cladding measures typically only tens of micrometers

in thickness and is covered by a 10SSYj acket to avoid cross-

talk to other fibers. The resulting perturbation of the mode

fields of Section II is nevertheless small because of the

rapid cladding field decay of almost all modes. For this

reason, the power 10SScan be obtained in good approxima-

tion from the unperturbed mode field with the help of the

matching conditions at the jacket interface [27]. If the

(complex) jacket index is nj and its real part is not too

different from the cladding index, the ratio between the

radial and the axial power flow at the interface becomes
[5J7]

(3Q)x = Re [(knj/~) 2 – I]llz.

Assuming a cladding thickness s, we can relate the power

loss” a, to the averaged power density p (a + .s) at the

jacket interface by integrating around the circumference

and dividing by the total mode power ‘P. The result is

a~ = 4.34r(a + .s)xp(a + s)/F’ in dB. (33)

After inserting (7) and (A9), we have

4.34 lb(a)~j=—
a ‘ti(a + s)

,j$exp(-zf+sticlr/a) (.34)

with w from (10) in the case of the step index profile.

Ifl=O,

s= ~. In (4,34XjZlV2/~2&Yj) . (35)

In the case of the single-mode fiber operating at v = 2,

we find most parameters appearing in (35) from Fig. 2

and obtain s = 8a for aj/x = 1 dB/km, in good agree-

ment with results of [27]. The great variety of potential

jackets makes it difficult to find a representative value

for x. It may be of the order of unity or smaller. On the

other hand, it is evident from (35) that s is not very sen-

sitive to the ratio af/x.

The fairly complicated rigorous solution of (34) for 1 # O

is omitted here. The line ai/x = 1 dB/km in Fig. 8 depicts

the result for the specific example:

core radius a = 25 pm

cladding thickness s = 20 #rn

free wavelength A = Ivm
relative index difference A = 1 percent

core refractive index nl = 1.46.

Trapped modes to the right of this line have a loss ratio

cq/x larger than 1 dB/km, Their number represents ap-
proximately a fraction

- 1 a2 ln3 ( l/&xj)

~~-Zmln(l+s/a)
(36)

--l i I
—

o I

i %2 I

I caustic I I

i forl>Ol

Fig. 9. Equivalel~ t dielectric profile of curved step index fiber;
center of curvature is far left (outside field of view) at distance 1?
from guide axis.

of the total mode volume. For the parameters listed above,

vi amounts to about 6 percent. As a rule of thumb, the

cladding thickness should bc

s m 36avj–1%-3/2 (37)

for a,/x = 1 dB/lim to be restricted to a fraction qi of all

modes. The same relationship holds for the membrane

length in the case of the single-material fiber (Fig. 7 (b)).

The core-melmbrane structure is typically surrounded by

a tube of the same material as core and membranes. This

tube provides strength and stiffness and the necessary

shield against contamination of the core surface. Naturally,

in this case, x obeys a relationship different from (32).

The bending of a dielectric waveguide produces a source

of radiation loss in the cladding; LIarcatili and Miller [29]

explain this phenomenon as follows: to maintain a guided

mode field \vith equiphase fronts on radial planes, a frac-

tion of the mode field on the outside of the bend would

have to exceed the plane wave velocity in the cladding

medium. Since this is impossible, the energy associated

with this part of the mode field is lost to radiation. For

the purpose of evaluating this effect, we reduce the prob-

lem to that of a straight guide by conformal mapping [20];

the result is the index distribution shown in Fig. 9. It is

easy to convince oneself that the index slope of Fig. 9

causes very nearly the same phase velocity differences as

a bend with its center at a large distance R to the left of

the profile center. It is also evident that the incessant in-

crease of the index towards the right eventually creates
a real radial wave vector component in the cladding, and,

as a result, periodic field solutions and a radiative power

flow extending to infinity.

Because of the absence of circular symmetry, the field

solutions with the profile of Fig. 9 are not of the form (2)

or (A9). Thk fact greatly complicates an estimation of

the radiative loss and has limit ed moat published work to

the lowest mode orders. Reference [29] is an excellent

survey of the literature. The following remarks add some

recent results applicable to aribtrary mode orders [30].
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As Fig. 9 indicates, the extent of the evanescen$ field

(between the interface and the caustic at which the field

turns radiative) increases with increasing azimuthal mode

order 1. As aresult and because of the rapid decay of the

evanescent field, meridional mode orders suffer more loss

in fiber bends than corresponding azimuthal orders.

Furthermore, modes that are degenerate in the straight

fiber exhibit differences in loss if they differ in orientation

with respect tothe plane-of curvature: fields that are even

or symmetric with respect to this plane behave differently

from fields that are odd.’ The following resnlts are based

on WKBJfield solutions forthe profile of Fig. 9 expressed

in parabolic cylinder coordinates [30]. The power loss

per unit length in decibels is

4.34 . W2

‘.?z~ (4VJ2+ &3&l/3,1/2)@ = ~2n2k ,,

. exp-l (W2~2/3 + ~2/3 _ @-1/3)3/2 (38)

with

2R
B=-—

3 n22k2a3
(39)

and

I
1+$,for even modes

[=. (40)

1, for odd modes.

In the case of thesingle-mode fiber operated at v = 2,

the first term in the exponential of (38) dominates. For

a. = 1 dB/krp, we obtain with the help of the parameters
of Fig. 2

R = (5 + 0.2 in A) AA-3/2. (41)

A relative index difference of 0.3 percent corresponds to

a core diameter of 5,6 pm and permits a bending radius of
23 mm, whiqh is ‘in the vicinity of t~e mechanically safe

bending limit.

The line q, = 1 dB/km in Fig. 8 represents a computa-

tion of t~ bepding loss on the basis of (38) for the fiber
characterlz~~ earlier and bent to a radius of 15 mm. In

general, the fraction of modes having a 10SSa. larger than

1 dB/krn is approximately

~0 _ o ~ [%B-’/’ + h1213( A112aac)]512— (42)
vA(Rkn2)2/3

For the example above, q. = 8 percent.

So far, we have ignored modes outside the cutoff line

denoted by u = v in Fig. 8. For these modes, the zero level

in Fig. 4(a) falls below the cladding level k2nz2 — @2. This

implies radiative field solutions throughout the cladding

and intolerable loss if Z = O. For 1 # O, however, the rac&

ative “field solutions exist only beyond the caustic at

r = al (U2 — V2) ‘112, where the function 12/r2 in Fig. 4

intersects the level k2nz2 — ~2. For large i, leakage through

the evanescent field region between the interface and the

caustic is small [31], and hence these modes can propa-

gate long distances even though u > v. To obtain a simple

estimate, we make the assumption that U2 — V2 <<12,

because this condition permits the largest extent of the

evanescent field region and thus promises the least leakage.

For typical multimode fibers for long-distance transmission

which have v < 50, this is a valid approximation, since the

loss of modes not fulfilling this condition is so high that

they are of no further interest. Similar power flow con-

siderations as for the jacket problem lead to the loss co-

efficient [31]

“=434%+%=)’’43)
The line aZ = 1 dB/km in Fig. 8 depicts the result for

the parameters listed earlier. Modes to the left of this line

must be considered as propagating even though they are

theoretically “cut off .“ The” relative increment in mode

volume as a result of these modes is approximately

qZ = 0.1 (aaz/A112) l/’. (44)

This result holds for v <50, a condition that seems to

be fulfilled for’ typical multimode fibers envisaged in opti-

cal communication applications. The fiber characterized

earlier has nZ = 6 percent.

It is interesting to note that the last three loss processes

(aj, a., and a,), ”which all originate from some form of
leakage through the evanescent field region, show a sharp

rise of loss at a certain mode order. This permitted us to

define this effect in terms of a reduction of the total mode

~olume rather than as a loss per unit length. If the leaky

inodes are not excited and coupling is absent, a loss based

on these effects should essentially be avoidable. As we

shall see, it is the presence of coupling which turns these

effects into an actual loss per unit length.

Mode coupling is caused predominantly by perturba-

tions which have a periodleity in propagation direction

equal to the beat wavelength A pertaining to the two

modes that are coupled [32]. This wavelength is the dis-

tance within which the phase of one of the modes lags a

total of 2m behind the other. The phase lag per unit length

ii

(45)

where dm = 0,*1,+2,.”. anddl = 0,*1, +2,... are the

differences in the order numbers between the two modes.

With the ‘help of (15), we obtain, for example,

tan 0 dmr + dl arccos (l/u)
~.—

(1 – 12/u2)”l/2
(46)

a

for the classical uniform core index. Most perturbations

are random and of a kind which strongly f avers coupling

between neighboring modes having a long beat wave-
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length or small K. The combinations drn = O, +1 and

dl = O, *1 are therefore of particular importance. More-

over, the nature of the perturbation excludes certain

transitions; directional changes of the guide axis, for ex-

ample, permit only ill = &1. Even with these restrictions,

the K-ValUeS of neighboring modes of the cylindrical step-

index, as obtained from (46), are functions of m and 1 that

are too complicated for a rigorous evaluation of mode cou-

pling in a multimode fiber. All studies so far have therefore

used approximations for the K-values similar to the one

obtainable by applying (45) to (21). In that case, if
g ~ m, the minimu K-value between neighboring modes

is

u tan 0
~=~=~ (47)

for the uniform core.

As an important source of mode coupling, let us con-

sider the effect of random directional changes of the axis

of a multimode fiber of the classical type (uniform core).

We assume that we know the “power spectrum” @(K) of

the curvature. The power coupling coefficient pertaining

to two modes with phase lag ii is then

C = &@(K) (ah,)’ = @ZJ2/81i. (48)

Because of our approximation (47), C is a function of

u only and not explicitly of m and 1. To simplify our prob-

lem even further, we assume that also the loss distribu-

tion, which may be caused by a combination of the loss

phenomena discussed earlier, is only a function of u. We

therefore write it as a(u). In that case, the transition to

a mode continuum permits us to reduce the coupling

among all M modes to some form of diffusion phenomenon

governed by a partial differential equation of the form [34]

(): c%=a(u)~. (49)

where Q(u) is the power dktribution in the mode groups

characterized by u.

No matter what power distribution is excited at the fiber

input, coupling and the loss processes involved eventually

establish a dynamic equilibrium which transforms Q(u)

into a distribution P(u), such that Q = P exp ( – Az),

where P is the lowest eigenfunction and A the lowest

eigenvalue of (49). In other words, the power distribution

assumes a function which minimizes the loss A. Equation

(49) then becomes

(): c: = [a(u) – A]P. (50)

Note that P(u) k the far-field power density discussed
ear~ler in the limit that ka e w.

A good phenomenological description of measured re-

sults [35], [36, fig. 5] which leads to the Poschl-Teller

differential equation [22], [37] is provided by

(51)

For this loss distribution and if we assume @(i) = O.

to be independent of i, the lowest eigenvalue A of (50)

obeys the relation

~AA
*C =

1+,/A”
(52)

One of the best fibers made to date had for example [35],

[36], A = 1 percent and E = A % 1 d13/km; hence

@. = 0.0023 km-l. The results do not change significantly

if +, rather than being independent of ,?, is a slowly de-

creasing function of K with @c = @(,&,x). To understand

the physical significance of the value obtained for 0., let

us assume th;at @ results from a number of minor, but rela-

tively abrupt, directional changes distributed randomly

over 1 km of fiber length. Let the directional change be 0.1

degree of angle occurring within 0.1 mm of fiber length

(radius of curvature 57 mm). In that case, 76 directional

changes per kilometer are sufficient to cause the value

$, obtained a,bove. Note that it is the change of curvature,

not curvature itself, which produces coupling and cou-

pling loss. As noted earlier, a much stronger, but constant

curvature of 15 mm radius produces an elimination of some

high-order modes, but essentially no loss, if these modes are

not excited and coupling is abscent.

A study of the parabolic profile for the case e = O

(abrupt loss increase at u = v) can be found in [38].

In that case, k = i,,,.. for all modes so that only @( i,~~~)

must be considered. It leads essentially to the relation

(52) with e ❑ = O.

IV. DELAY DISTORTION

A number of promising applications of fibers are in

communication systems which utilize some form of digital

envelope modulation of the optical signal ~5]. Accord-

ingly, fiber performance is usually characterized in terms

of the degradation of an optical pulse propagating through

the fiber. We shall follow this practice; alternative descrip-

tions like the baseband frequency characteristic of the

fiber can, at least in principle, be obtained from the above

results by a simple Fourier transformation [39]. The

delay per unit length of a light pulse at a given carrier fre-

quency ./Ois

(53)

If the carrier has a spectral width B which is broad com-

pared to that of the detected pulse envelope, the pulse

spread per unit fiber length as a result of the change of
d~[dk with j is approximately [40]

(54)
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The propagation constant D is a function of k, not only

because the index changes with frequency (material dis-

persion), but, in addition, because P in (5) is a function

of the v-value which in turn is proportional to frequency.

This effect is here called ‘(waveguide dispersion.” A third

pulse impairment is a consequence of the fact that (53) is

a function of the mode number, so that a pulse spread

arises in multimode fibers even if the frequency dependence

is neglected.

As far as their effect on the signal is concerned, material

and waveguide dispersion are interrelated in a compli-

cated way; however, by computing one in the absence of

the other, we can show that the material effect usually

dominates and the waveguide effect can be neglected.

We assume first that the carrier is a plane wave propagat-

ing in a dielectric of index n ( f). We have b = nk and,

since dlc/lc = dj/.f = – d~/~, we obtain from (54)

1 B d’n
—. (55)T=~~h2dh2

A=,l f o

The coefficient k2d2n/dhz computed from index data of a

silica-rich core material [41 ] is plotted in Fig, 10. Also

shown is the result of a direct measurement of the effect

[42] at a wavelength of 0.8 pm. Typical luminescent

diodes made from A1-Ga-As have a spectral width (be-

tween l/e points) of 4 percent and hence produce a T of

4 ns/kn~ when operated at 0.8 pm [43]. The effect could

be substantially reduced, if such sources could be operated

at longer wavelengths, possibly by using In–Ga–As instead

of A1–Ga–As [44].

Next consider a classical (step-index) fiber made from

a dispersionless material. To calculate d@/dlc, we write

(30) in the form

(56)

and obtain with the help of (4) and (6)

(57)

In order to compare thk with the coefficient in Fig. 10,

we have plotted

(nl – n,)-?kd2@/dk2 (58)

as obtained from (57) for the fundamental mode versus v

in Fig. 2. The coefficient reaches a maximum at v = 1.2,

but decreases to about 0,28 at a typical operating point

of v = 2. Thus lcdt~/dk2 = 0.4 to 0.04 percent for A = 1

to 0.1 percent, as compared to h2d2n/dk2 = 3.1 percent at

0.8 pm wavelength.

Waveguide dispersion coeilicients as high as those indi-

cated in Fig. 2 occur in multimode fibers only for those

L————_—~
0.6 0.8 1.0 1.2

WAVELENGTH IN pm

I?ig. 10. .Material dispersion coefficient for silica-rich core [41]
plotted versus wavelength. IJot indicates measured value [42].

modes which are operated relatively close to cutoff. Even

if these modes are fuIly transmitted, they constitute a

sufficiently small number to have little influence on the

pulse distortion as far as their waveguide dispersion is

concerned. In these fibers, it is the delay difference be-

tw-een individual modes which distorts the pulse.

To study this effect, we introduce (17) into (57) and

write

d@ nlzlc

[

~2 2A

%= p 1 (59)— l—; h+(w2+z2)l/2 “

The term n12k/fl is easily identified as the ray-optics ap-

proximation for dfijdk. As a mode approaches cutoff, w and

1 can be small enough to reduce the ray optics delay n,21c//3

by a significant amount, producing what is known in the

slab structure as the Goos–Haenchen shift [9], [45]. In

fact, for 1 = O, this shift coincides exactly with that of the

TE slab modes [45]. Most modes in multimode fibers

propagate sufficiently far from cutoff that n12k/~ k a satis-

factory approximation for all. Let us now estimate the

magnitude of these delays directly for the general class

of graded profiles (20), of which the classic step-index pro-

file is a special member. We use (21) and (53) to find [23]

no2k ( )4A U2
t(u) = — l–——

Cfl g+2v2
(60)

which reduces to n02k/cf? for g -+ a. For arbitrary g, the

delay of the mode of lowest order is t(0) = no/c. The

highest orders have u = v and t(v) = (no/c) (1 – 2A) ’12.

The maximum cliff erence is therefore tmax– tillinR noA/c

for g -+ @. If A = 1 percent this amounts to about 50

ns/km.

optimal equalization occurs for [23]

which characterizes a profile very close to the parabolic.

In that case t(0) = t(v) = nO/c, but all other modes have
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i(u) < nO/c, the fastest arriving at t (v/@) = nOA2/8c.

For arbitrary g, the delay difference between the slowest

and the fastest mode is

‘ A(g– 2+2 A)/(g +2),

2<g

(g – 2+ 4A)2/32,

2–2A<g<2

tmax –kin=:<

(g – 2)2/32,

2–4A<g<2–2A

A(2 – 2A – g)/(g +2),

l<g<2– 4A.\

Evidently, good equalization occurs in a very narrow

region of g values and requires accurate control of the

grading process during the fiber or preform preparation.

That these requirements can be met very closely was

demonstrated by the early Selfoc fibers [46], whose profile

had a g-value of very nearly 2 – A in a large part of the

cross section [47]; experiments proved that these fibers

showed indeed an amazingly good mode equalization

[48]. For those profiles, which belong to the class (20),

but whose g-values deviate from the optimal, we can cal-

culate the maximum delay spread as a function of the

maximum deviation dn of the index from the optimal any-

where between r = O and r = a. The ratio dn/nOA is called

the profile error; we use it as a parameter in Fig. 11.

Plotted in Fig. 11 is the index difference or the numerical

aperture which would lead to a given delay spread per

kilometer for various profile errors. Also shown is the

spread caused by material dispersion in silica fibers, when

the carrier source is an A1–Ga–As luminescent diode

operated at 0.8 vm.

Equation (62) must be considered as an upper bound

for the pulse broadening possible as a result of mode delay

differences. The actual broadening is usually much smaller;

two effects are responsible for this. One is the selective

loss of certain modes or mode groups as a result of the loss

effects discussed in Section III. The other is mode coupling

which tends to average the delay by “switching the light

around” among the various modes. To study the first

effect, consider the example of a graded-index fiber whose

material loss varies in the fiber cross section according to

the relation (31). The reason for such a variation was

explained earlier. Let us exclude the singularity in the

vicinity of the parabolic distribution for the time being

and assume that the g-value of our fiber deviates substan-

tially from 2. A profile error of 10 percent, for example,

corresponds approximately to g = 3. If the material loss

were the same everywhere and all modes were excited

equally, the arrival of all modes at the end of a transmis-

sion path L would fall into the interval

L~/c < T < (Lno/c)A(g – 2)/(g + 2),
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1 2 4 6 8 10

DELAY SPREAD ns/km

Relative index difference A and numerical aperture which
produce delay spread plotted along absissa for various m-ofile
errors clnjn~fi - -

where ‘T k related to the mode parameter u by [23]

(63)

The power density per unit time interval would be pro-

portional [23] to T’Iu. If the two loss values a. and CYzof

(28) are different, we find the loss as a function of u from

(31), and using (63), can write the power distribution as

proportional to

Tz/9 exp [–O.46(CIZ – aO)cT/nOA(g – 2)]. (64)

with cw and a’ in dB/km. The rms value of this distribu-

tion is

noA (1 — 2/g) (1 + 2/g) ‘f’
~.—

0.86g(a, – CXO)

(65)
c

as long as u << T(v) of (63). The rms value is a good

measure of the expected pulse broadening and of the

limits of the information rate of transmission [49]. Note

that (65) is independent of the transmission distance L.

As an example, let us assume a. = 20 dB/km, a, = 40

dB/km, A = 1 percent, and g = 3. As long as L >2 km,

the rms vvidtlh can approximately be computed from (63)

using Tzlg as the power distribution. One finds an rms

value of 2.8 ns/km. For L > 2 km, (65) applies and the

rms width asymptotically approaches a value of 3.5 ns.

This obviously desirable limitation of the pulse broadening

is achieved by extinguishing some of the high-order modes.

If these modes represent a necessary and important part

of the carrier as in the case of an incoherent source, the

overall loss resulting from this extinction may represent

an intolerable penalty payed for the improvement in
signal distortion. For the example discussed earlier, this

penalty is 19 dB after 4 km. At that point, the rms value

of 3.5 ns is about 3 times shorter than that expected with-

out mode-dependent loss.
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Mode coupling produces a similar signal improvement

[50]. In fact, all by itself and if limited to trapped modes,

it achieves thk improvement without a loss penalty. In

practice, the influence of mode coupling is difficult to

separate from the loss effects. In the presence of both, the

signal improvement as well as the loss penalty are compli-

cated functions of the interdependence of coupling and

loss in the various modes [51]. So far only the simplest

models have been considered. A convenient treatment of

the problem begins with (49) considering the time de-

pendence of Q (u, 7’,z) by an additional term t(u) 13Q/~T

with t from (60) and c?Q/d T being the partial derivative

with respect to time. Closed-form solutions of the result-

ing partial differential equation have been given only for

the step-index profile, large c in (51) and C(u) = con-

stant [52]. However, it can be shown [503[52] that,

for a transmission length L>> A/C(u), when the dynamic

equilibrium distribution is established, the power output

becomes a Gaussian in time, whose rms value u increases

as Lli2. This relation obtains under a wide variety of con-

ditions independent of specific fiber characteristics. The

loss penalty is then equal to 4.34 AL in dB with A being

the equilibrium loss coefficient obtained from (50). Let

UObe the rms width of the output power distribution in

the absence of coupling and (mode-dependent) loss. Since

u. is proportional to L, the product

()
G = 4.34 E ‘AL in dB (66)

ma

is independent of L and has come to be used as the figure of

merit of a given (or artificially introduced) combination

of coupling and loss.

The most desirable loss distribution would be described

by a small coefficient e in (51), leading to a sharp increase

of a(u) at u = v, which accounts for the transition from

trapped to leaky modes. Most discussions of the problem

therefore consider a first approximation with c = O. A

variety of coupling functions C(u) have been considered,

among them the class [53]

c(u) = c(v) (v/u) ‘. (67)

To summarize the results, Fig. 12 presents a plot of G(z)

for e = O and a uniform core index. The figure of merit

of the parabolically graded fiber [38] with e = O is

G = 0.27.

V. CONCLUSIONS

We have tried to give a consistent picture of the theory

of the optical fiber, as far as it is most relevant to design

and systems questions in optical transmission applications.

In most cases, we have opted for clarity and simplicity

rather than utmost accuracy and hope that those interested

in’ better accuracy can find it in the references cited. The

main approximation underlying all problems discussed

here is the assumption of essentially forward directed

propagation and, following from that, transverse electro-

magnetic field solutions. We have used the WKBJ ap-

proach for all multimode fibers, even in the case of a uni-

form core index, because it provides a clear mode picture,

a simple correspondence between modes and rays and an

effortless transition to a mode continuum. In addition, it

is easily extendable to graded-index profiles. Higher order

approximations extending beyond the paraxial results are

obtained where necessary, as, for example, in the computa-

tion of the group delay for near-parabolic profiles. Em-

phasis was placed on those characteristics of fibers, which

deviate significantly from those of slab or film guides; this

is particularly important for multimode fibers which

transmit a large number of modes with high azimuthal

orders. Practical aspects of fiber design, as, for example,

the influence of a finite cladding width, curvature, cross

sectional loss variations, material dispersion, and the effect

of index profile tolerances were assessed. The large variety

of potential applications made it unpractical to consider

specific designs; we hope that the results are presented in

a sufficiently simple way so that the reader can use them

to solve his specific problems.

APPENDIX

WKBJ APPROXIMATIONS FOR

CYLINDRICAL STRUCTURES

The general wave equation becomes separable in a

cylindrical coordinate system (~,o,z), if the refractive

index n is a function of r only. In that case, the differential

equation for the radial field dependence E(~) assumes the

form

~2E

[
g+~~+ k’n’(r)–p’–$ 1E = O. (Al)

We set

E = F exp [iiiS(r)] (A2)

where F k a coefhcient independent of r. Upon substitu-

tion into (Al ), we have

its” + (Ml’) 2 + il%s’/r + (iiw – ,(3’– l’/r’) = o

(A3)

where the primes denote differentiation with respect to r.
We now assume that n changes slowly within a distance

comparable to the wavelength A, so that an expansion of

8(r) in powers of A converges rapidly. (For the classical

structure, we exclude the area around the index step; the

step can later be accounted for by suitable matching

conditions. ) After substituting

s(r) =s. +:sl +”.. (A4)

into (A3) and equating equal powers of A, one obtains the
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following equations for the first two terms of the expan-

sion (A4):
m

– (k~~)s + (kzn’ – (32– 12/r2) = O (A5)
= 1.’D -
~

u
ihh$f’ — 2i%iyo’&’ +- ihh!30’/T = o. (A6) ~

K

Integration of these equations yields ;

/

$

So=k ‘ (%2 _ p2/k2 – 12/~2r2)’12dr (A7) &
~ 0.!5 -

3
0

and
E

S, = (;/4) In (r’n’ – @’r2/W – 12/lc2) (A8)

plus constants of integration which are omitted for clarity. {D I I 1 I
o 2 4 6 8 .1(
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In order to construct the complete solutions, we have to

distinguish between three regions (see Fig, 4 or 6) : the
fl~

Fig. 12. Figure of merit G(V) for coupling coefficients proportional
tube in which propagating field conditions obtain (SO real), to (rL/u)’, for e = O (abrupt loss il~crease at u = O), and a step-

and the two regions inside and outside of that tube in

which So is imaginary.

Let us consider the classical index distribution of Fig. 4

as an example. In the case of Iossless propagation, stand-

ing-wave conditions obtain for the cross sectional field

distribution in the propagation region. Hence, in order to

obtain a solution of the form cos ( kSo + ~), we must

consider both signs of (A7) in this region. The phase term

# is determined by the matching conditions at the inner

caustic. In the case of the classical structure, we have [20]

# = –~/4. The field outside the propagation region
vanishes for r + w. We therefore choose the sign in (A7)

to produce a decaying exponential for increasing r. To

obtain the field solutions in the propagation region (n = W]

and in the cladding region (n = n2), we use the abbrevi-

ations (9) and (10) in (A8) and (A9), insert the latter

equations into (A4) and finally write (A2) with the help

of (A4) in the form

index profile.

p\TwtaiJ -A PPROXIMATION

\ In. z

.4 ip

g

6

;

I

Fig. 13. Transverse mode field for m = 2 and ( = 3 (solid line).
WKBJ approximation coincides with exact sol[~tion everywhere
except as shown by dashed line.

II’l (2a/7rf2r) 1/2cos 1[-~+~,u~d,/.]~<”r<.

E(r) =

F2(za/2zir)1/2 exp ~- /“$dr/al r>.

(A9)

where the constants F1 and F2 have been chosen such that

the solutions ;oincide with the 13ebye approximations of

the Bessel functions Jt (zw/a) and KJ (wr/a), respectively

[19]. They describe the Bessel functions with surprising

accuracy even to the lowest order numbers. Fig. 13 illus-

trates the example m = 2, 1 = 3.

Just as in the case of the more accurate solution (2), the

relations between u and w and between F1 and F2 are ob-
tained from the match of the field solutions (A9) and

their radial derivatives at r = a. However, a satisfactory

solution for the majority of the modes of a multimode

fiber is based on the assumption F2 = O which ignores

Ja J
J

the evanescent fields altogether. In this case, propagating

modes exist [20], [22] when

!

a
tidr/a = (m — *)T (A1O)

lalu

where m = 1,2, . . . is the meridional order number. AS the

r/4-term on the right is significant only for a few low-order

modes, it is neglected ‘in the text.
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